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Abstract

Preterm neonates face significant neurological risks due to incomplete brain development at birth. The third trimester is
critical for brain maturation, and premature birth disrupts essential developmental processes, leading to long-term cognitive,
motor, and sensory impairments. Key vulnerabilities include cortical underdevelopment, white matter damage, and immature
neurotransmission, contributing to neurodevelopmental disorders such as cerebral palsy, attention deficits, and learning
difficulties. While advances in Neonatal Intensive Care Units (NICUs) have improved survival rates, early detection and
continuous monitoring of complications remain challenging. The integration of Internet of Things (IoT) technology in
neonatal care presents a transformative approach, enabling real-time physiological monitoring, predictive analytics, and
automated alerts for timely interventions. IoT-driven neonatal monitoring systems enhance clinical decision-making, reduce
caregiver burden, and improve patient outcomes. In parallel, Artificial Intelligence (AI) is revolutionizing neonatal healthcare
by processing multimodal data, including clinical records, physiological signals, and imaging to provide real-time insights,
predictive diagnostics, and risk assessments. Machine learning (ML) and deep learning (DL) techniques aid in disease
prediction, anomaly detection, and precision diagnostics, significantly enhancing neonatal monitoring. However, challenges
such as AI interpretability, data security, and integration into clinical workflows must be addressed to ensure adoption.
Explainable-AI (XAI) tools such as SHAP, LIME, and Grad-CAM are crucial in making AI-driven decisions more
transparent and actionable. The future of neonatal AI lies in developing multimodal frameworks that integrate physiological
signals and facial, vocal, and motion data for comprehensive neonatal health monitoring. Addressing the technical and ethical
challenges associated with AI and IoT adoption will be critical to fully realizing their potential in neonatal care and
improving outcomes for preterm infants.
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1. Introduction

Neonates refer to newborn infants within the first 28
days of life, a period marked by profound
physiological transformations. This phase is critical for
survival and long-term health, as neonates must adapt
to life outside the womb. These adaptations involve
significant changes in respiratory, cardiovascular,
metabolic, and immune systems, making neonates
particularly vulnerable to complications (Lawn et
al.,2005; Moster et al., 2008; Blackburn, 2017; Anef,
2019). Neonatal development is a critical period
categorized into distinct stages based on the gestational
age of the infant, as illustrated in Figure 1. Each stage
reflects varying degrees of physiological, neurological,
and developmental maturity, as discussed below. These
stages are crucial for determining the medical and
technological interventions required to support
neonates, especially those born preterm (Goldenberg et
al., 2008; Blencowe et al., 2013, 2013; Tana et al.,
2023):

(i) Extremely Preterm Neonates (22–28 Weeks):
Infants born at this stage face the most significant
challenges due to incomplete organ development. They
typically require advanced life-support systems, such
as mechanical ventilation, and constant monitoring for
survival. The central nervous system (CNS), lungs, and
gastrointestinal system are underdeveloped, increasing
the risk of conditions like intraventricular hemorrhage
(IVH) and chronic lung disease (Jobe & Ikegami, 2000;
Behrman et al., 2007; Mally et al., 2010; Kusuda,
2025).

(ii) Very Preterm Neonates (29–31 Weeks): This
group represents infants with a slightly higher
gestational maturity than extremely preterm neonates.
While their survival rates are better, they still require
intensive care in neonatal intensive care units (NICUs)
to support respiratory and thermal regulation.
Neurological development is ongoing, and these
neonates are at risk for neurodevelopmental disorders
(Pani & Panda, 2012; Grunau, 2013; Vrancken et al.,
2018).

(iii)..Moderate Preterm Neonates (32–34 Weeks):
Infants born during this period exhibit more stable
physiological functions but still face risks associated
with feeding difficulties, respiratory instability, and
jaundice. Their neurological and organ development
has progressed, reducing but not eliminating the risk of
long-term developmental challenges (Sharma et al.,
2019; Karnati et al., 2020; Vuppu & Iragamreddy,
2023).

(iv)..Late Preterm Neonates (32–34 Weeks): Often
referred to as "near-term," these infants have a higher
degree of maturity. However, they still require careful
monitoring for potential issues such as transient
tachypnea, hypoglycemia, and thermoregulation
problems. While many late preterm neonates can thrive
with minimal intervention, they remain at risk for mild
developmental delays (Pulver et al., 2010; Sharma et
al., 2019; Karnati et al., 2020).

Figure 1 The classification of neonates into distinct stages based on their gestational age at birth. The stages range from
Extremely Preterm Neonates (born at 22–28 weeks) to Full-Term Neonates (born at or beyond 37 weeks). Each stage
highlights the varying degrees of developmental maturity, from severely underdeveloped organ systems in extremely preterm
neonates to fully matured systems in full-term neonates. Key stages include Very Preterm Neonates (29–31 weeks), requiring
intensive medical support, and Moderate and Late Preterm Neonates (32–36 weeks), who display progressively greater
physiological and neurological stability but may still face mild complications. This classification is critical for guiding clinical
interventions, particularly in NICUs, where care is tailored to the specific needs of neonates in each stage.
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Preterm neonates are at heightened risk of neurological
complications due to incomplete brain development at
birth (Paneth, 2018). These issues can have immediate
and long-term consequences, affecting motor,
cognitive, and sensory functions. In addition, the third
trimester of pregnancy is a critical period for brain
development, during which the neonatal brain
undergoes rapid growth and structural refinement
(Dubois et al., 2020; Fenn-Moltu et al., 2022). This
process is significantly interrupted in preterm births,
resulting in a cascade of developmental vulnerabilities.

The interruption of these vital developmental processes
underscores the fragility of the preterm brain and its
heightened risk of injury. Understanding these
challenges is essential for developing tailored
interventions that support neural growth and mitigate
the long-term consequences of preterm birth. In this
way, the article delves into the neurological
vulnerabilities of preterm neonates, emphasizing how
incomplete brain development at birth increases the
risk of motor, cognitive, and sensory impairments. It
explores key challenges such as cortical
underdevelopment, white matter damage, and
immature neurotransmission, all of which contribute to
long-term neurodevelopmental disorders like cerebral
palsy and attention deficits. The discussion extends to
common neurological conditions affecting preterm
neonates, including intraventricular hemorrhage,
periventricular leukomalacia, and hypoxic-ischemic
encephalopathy, highlighting their causes and long-
term implications. Given these vulnerabilities, the
critical role of Neonatal Intensive Care Units (NICUs)
is examined, showcasing their specialized interventions
for stabilizing preterm infants and managing
complications related to respiratory distress, infections,
and thermoregulation. However, despite advancements
in NICU care, the challenges associated with intensive
monitoring, caregiver burden, and the need for real-
time clinical decision-making persist.

The heightened neurological risks faced by preterm
neonates due to incomplete brain development
underscore the need for continuous monitoring and
timely interventions. Despite significant advancements
in Neonatal Intensive Care Units (NICUs), challenges
persist in ensuring early detection and personalized
care. The integration of technology, particularly the
Internet of Things (IoT) and Artificial Intelligence (AI),
offers promising solutions to bridge these gaps by
enabling real-time physiological monitoring and
predictive analytics. AI is transforming clinical
decision-making, especially in fields such as neonatal
care, where early and accurate insights are crucial for

the well-being of vulnerable patients. AI technologies
enable advanced predictive analytics, facilitate real-
time monitoring, and provide sophisticated decision-
support tools in neonatal intensive care units (NICUs)
(Pigueiras-del-Real et al., 2024). Utilizing diverse data
sources (Shah et al., 2022; Qureshi et al., 2024),
including clinical records, physiological signals, and
multimodal data (e.g., ECG (Gentile et al., 2023),
facial (Shah et al., 2023), vocal (K et al., 2021), and
motion data (Abbasi et al., 2023)), AI in neonatal care
has the potential to improve health outcomes by
capturing a comprehensive view of a neonate’s health
status. Yet, to be adopted effectively in clinical settings,
these AI models must be interpretable and transparent,
providing clinicians with clear insight into the
reasoning behind their predictions. This interpretability
ensures that AI-driven insights are clinically actionable,
and fosters trust among healthcare providers.

Considering the challenges and the growing need for
AI in NICUs, this article delves into the critical
neurological challenges faced by preterm neonates,
particularly those born before completing their full
gestational development. It highlights the significance
of the third trimester in brain maturation and how its
disruption leads to long-term impairments. Despite
advancements in Neonatal Intensive Care Units
(NICUs), challenges persist in ensuring continuous
monitoring and timely interventions. The integration of
Internet of Things (IoT) technologies and Artificial
Intelligence (AI) into neonatal care is transforming
early detection, monitoring, and decision-making in
NICUs. IoT facilitates real-time data collection from
various sensors, while AI-driven models analyze
multimodal data, including physiological signals,
clinical records, and imaging, to predict risks and
improve outcomes. However, these technological
advancements come with challenges, including data
security, model interpretability, and clinical workflow
integration. This paper explores these aspects in detail,
offering insights into how IoT and AI can revolutionize
neonatal healthcare while addressing their limitations.

The article is structured into several key sections, each
designated with a specific section number for clarity.
Section 2 examines the role of Neonatal Intensive Care
Units (NICUs) in stabilizing and supporting preterm
infants, outlining specialized interventions for
managing complications such as respiratory distress
and infections. Section 3 explores the challenges in
neonatal care, including the burden on caregivers, the
limitations of traditional monitoring systems, and the
need for continuous, real-time physiological
assessment. Section 4 delves into the role of IoT in
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neonatal monitoring, detailing its architecture,
advantages, and the challenges associated with its
implementation in clinical settings. Section 5 presents
the integration of AI in NICUs, highlighting predictive
modeling, machine learning applications, image and
signal processing, and the necessity of explainability
tools such as SHAP, LIME, and Grad-CAM to enhance
trust and clinical adoption. Section 6 introduces a
multimodal AI framework that combines ECG, facial,
vocal, and motion data for a comprehensive approach
to neonatal monitoring. Section 7 discusses ethical
considerations, data security concerns, and
interoperability challenges associated with AI and IoT
in neonatal healthcare. Finally, Section 8 concludes the
article by summarizing key findings, discussing future
research directions, and emphasizing the potential of
AI and IoT in transforming neonatal care.

2. Neurological issues and long-term impacts

Preterm neonates, particularly those born extremely or
very preterm, are at a heightened risk of developing
various neurological complications due to the
immaturity of their central nervous system and the
challenges associated with their early birth. Some of
the most common neurological conditions affecting
preterm neonates are as follows:

One of the primary areas affected by preterm birth is
cortical development. The cerebral cortex, responsible
for higher-order functions such as sensory processing,
motor coordination, and cognitive abilities, remains
underdeveloped in preterm neonates (Back & Miller,
2014; Heuvel et al., 2014). This underdevelopment is
often attributed to the disruption of normal cell
migration, differentiation, and synapse formation.
Consequently, preterm neonates frequently exhibit
difficulties in sensory processing, such as visual and
auditory perception, as well as motor coordination
challenges that may persist into later life stages
(Molnár, Luhmann & Kanold, 2020; Wallois et al.,
2020).

Another critical issue in preterm neonates is the
vulnerability of white matter. White matter, essential
for effective neural communication, undergoes
significant maturation during the third trimester,
particularly through the process of myelination. In
preterm neonates, incomplete myelination leaves white
matter highly susceptible to injury from factors such as
hypoxia, inflammation, or intraventricular hemorrhage.
Damage to white matter can lead to disrupted neural
signaling, resulting in motor deficits, cognitive delays,

and long-term neurodevelopmental impairments,
including conditions like cerebral palsy.
In addition, neurotransmission, the process by which
neurons communicate via synapses, is also
compromised in preterm neonates due to the
immaturity of their neural networks. During the third
trimester, the brain undergoes critical processes such as
synaptic pruning and the maturation of
neurotransmitter systems. These processes are
disrupted in preterm births, leading to inefficient neural
network formation. (Basu et al., 2021; Petanjek et al.,
2023). The impaired development of excitatory and
inhibitory neurotransmitter systems may further
contribute to challenges in regulating neural activity,
which can manifest as difficulties in attention, memory,
and emotional regulation later in life (Scheuer et al.,
2021; Yan & Rein, 2022).

Intraventricular hemorrhage (Honnorat et al., 2023;
Périsset et al., 2023) is a significant concern in very
preterm infants, characterized by bleeding into the
brain’s ventricular system. This condition often occurs
within the first few days of life due to the fragility of
blood vessels in the developing brain and fluctuations
in cerebral blood flow. IVH is graded on a severity
scale from I to IV, with higher grades associated with
more severe neurological consequences, including
hydrocephalus and long-term neurodevelopmental
impairments.

Periventricular leukomalacia (Martinez-Biarge et al.,
2019; Petri & Tinelli, 2023) refers to the damage or
softening of the white matter surrounding the brain’s
ventricles, primarily due to a lack of oxygen or blood
flow (ischemia). PVL is one of the leading causes of
motor impairments, such as cerebral palsy in preterm
infants. The condition disrupts the development of
myelination, which is crucial for efficient nerve signal
transmission, and often results in spasticity, poor
coordination, and other motor deficits.

Hypoxic-ischemic encephalopathy (Nabetani et al.,
2021; Tetorou et al., 2021) is a type of brain injury that
occurs due to insufficient oxygen supply (hypoxia) or
reduced blood flow (ischemia) during or shortly after
birth. While HIE can affect term infants, preterm
neonates are particularly vulnerable due to their
underdeveloped brain structures. Depending on the
severity, HIE can result in a range of outcomes, from
mild developmental delays to severe conditions such as
epilepsy or cerebral palsy.

Preterm neonates are at increased risk of long-term
neurodevelopmental delays, which may manifest as
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cognitive, motor, and behavioral challenges during
infancy and later in childhood (Jois, 2019; Gamarra-
Oca et al., 2021). These delays often stem from a
combination of perinatal brain injury, altered
neurodevelopmental trajectories, and environmental
factors. Cognitive impairments can include difficulties
with attention, memory, and executive function, while
motor challenges may involve delayed milestones or
abnormal muscle tone. Behavioral issues, such as
hyperactivity or autism spectrum disorders, are also
more prevalent in this population (Linsell et al., 2018;
You et al., 2019).

The neurological challenges faced by preterm neonates
often extend far beyond the neonatal period, leading to
lifelong consequences that significantly impact their
quality of life. Due to the immaturity of their brain at
birth and the high vulnerability to injuries during
critical developmental stages, preterm neonates are
predisposed to a range of long-term
neurodevelopmental complications.

Motor impairments are among the most common long-
term effects in preterm neonates, with cerebral palsy
being a predominant condition. Cerebral palsy results
from damage to the motor control centers of the brain,
often due to conditions like periventricular
leukomalacia (PVL) or intraventricular hemorrhage
(IVH). Children with cerebral palsy may experience
spasticity, muscle weakness, poor coordination, or
even complete loss of motor function in severe cases,
requiring lifelong physical therapy and assistive
devices for mobility (Hong & Rha, 2023; Martini &
Corvaglia, 2023).

Cognitive challenges are frequently observed in
individuals born prematurely. These deficits may
include learning disabilities, difficulties in language
processing, attention disorders, and impaired executive
functioning, such as problem-solving and decision-
making. Memory-related issues are also common,
stemming from disruptions in hippocampal
development, a brain region critical for memory
consolidation (Vandormael et al., 2019; Cainelli et al.,
2020). Such impairments often result in academic
challenges and necessitate individualized educational
support during school years.

Preterm neonates are at an increased risk of developing
behavioral disorders as they grow older. Among these,
attention-deficit/hyperactivity disorder (ADHD) and
autism spectrum disorders (ASD) are particularly
prevalent. ADHD in former preterm infants may
manifest as difficulties with attention regulation,
impulsivity, and hyperactivity, while ASD is often
associated with social communication challenges and

repetitive behaviors (Makris et al., 2023; Rubin et al.,
2023). The etiology of these disorders is multifactorial,
involving a combination of perinatal brain injuries and
altered neurodevelopmental pathways.

Addressing these neurological challenges requires
timely medical interventions and long-term
multidisciplinary support, including physical therapy,
occupational therapy, and neurodevelopmental
assessments, to optimize outcomes for preterm
neonates. Also, the long-term impacts emphasize the
critical need for early detection, targeted therapeutic
interventions, and sustained multidisciplinary care.
Addressing these challenges proactively can enhance
functional outcomes and improve the overall quality of
life for individuals born prematurely.

3. Role of NICUs in neonatal care

NICUs are specialized hospital units dedicated to the
care of critically ill newborns. These environments are
equipped to handle a range of complications that arise
in premature or high-risk infants, such as respiratory
distress syndrome, infections, jaundice, and congenital
disorders (Bulut et al., 2022; De Paula Fiod Costa &
De Paula Fiod Costa, 2022; Shah et al., 2022). NICUs
are designed to create controlled, supportive
environments that cater to neonates' unique medical
needs, primarily focusing on stabilizing vital functions
while addressing the specific complications associated
with underdeveloped organs.

NICU serves as a critical care environment specifically
designed to meet the unique needs of newborns who
require specialized medical attention. These units
provide a tiered system of care categorized into levels
based on the complexity of services offered (Bourque
et al., 2024; Goodman et al., 2024). Level I NICUs
cater to healthy newborns requiring minimal
monitoring and support, while Level II facilities
manage moderately ill or premature infants needing
more focused care, such as short-term respiratory
assistance or intravenous therapy. Level III NICUs
offer advanced interventions for critically ill neonates,
including mechanical ventilation, advanced imaging,
and specialized treatments. At the highest level, Level
IV NICUs are equipped for the most complex cases,
including surgical procedures and treatments for life-
threatening conditions, supported by a
multidisciplinary team and cutting-edge technology.
This tiered approach ensures that newborns receive
care tailored to their specific medical needs, promoting
better outcomes through a combination of expert staff,
advanced equipment, and specialized protocols.
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NICUs are designed to address a range of medical
conditions commonly encountered in newborns,
particularly those born prematurely or with underlying
health issues. These include hypothermia, where an
infant’s body struggles to maintain a stable temperature
due to underdeveloped thermal regulation, and
respiratory distress syndrome caused by immature lung
development (Shah et al., 2022; Goodman et al., 2024).
Other critical conditions include hypoxia, characterized
by insufficient oxygen in the bloodstream, and sepsis, a
severe infection that can rapidly become life-
threatening. Each condition is treated using specialized
interventions, such as mechanical ventilation for
respiratory support or antibiotics to manage infections,
ensuring that neonates receive timely and effective care
to stabilize their health and support their development
(Alhumaid et al., 2024).

NICUs are equipped with a range of advanced medical
devices and technologies designed to address the
unique healthcare needs of critically ill newborns.
Incubators play a central role by providing a controlled
and thermally regulated environment that protects
neonates from temperature fluctuations and external
stressors, crucial for their fragile systems (Hodson,
2018; Chandrasekaran et al., 2021; Vitale et al., 2021).
Mechanical ventilators are employed to assist or
completely support breathing in neonates with
underdeveloped or impaired lungs, ensuring adequate
oxygen delivery and carbon dioxide removal (Gupta et
al., 2021). Oxygen hoods deliver a precise
concentration of oxygen to infants who require
respiratory support without invasive intubation, while
phototherapy units are used to treat jaundice by
breaking down excess bilirubin in the skin through
exposure to specific wavelengths of light (Sashi-
Kumar et al., 2016).

3.1. Challenges in neonatal Care

Providing care for neonates, particularly those born
prematurely or with critical health conditions, poses
significant challenges due to their physiological
vulnerabilities and the demanding nature of delivering
precise, real-time care in a high-stakes environment.
Neonates have fragile health owing to underdeveloped
organs, immature physiological systems, and a
heightened susceptibility to infections, making them
prone to rapid health deterioration. The delicate
balance required to stabilize and support these infants
highlights the complexities of neonatal care.

One of the primary challenges stems from the
physiological vulnerabilities of neonates. Premature
infants often have underdeveloped cardiovascular
systems, leading to issues such as hypotension and

poor perfusion. Their respiratory function is similarly
compromised due to immature lungs lacking sufficient
surfactant, resulting in conditions like respiratory
distress syndrome (RDS) (Kharrat & Jain, 2022; Brett
& Robinowitz, 2023; Shah et al., 2024). Additionally,
their immune systems are underdeveloped, making
them highly susceptible to infections that can escalate
quickly. These physiological weaknesses demand
constant vigilance and specialized medical
interventions to prevent or address complications as
they arise.

Another critical aspect is the need for intensive
monitoring to detect subtle changes in a neonate’s
condition. Monitoring systems in NICUs are designed
to track vital signs such as heart rate, respiratory rate,
oxygen saturation, and temperature in real time.
However, these systems are not without limitations
(Khanam et al., 2021; Maurya et al., 2021; Cay et al.,
2022; Al-Beltagi et al., 2024). Traditional monitoring
devices can sometimes produce data inaccuracies or
false alarms, complicating clinical decision-making.
Furthermore, these systems are often manually
intensive, requiring caregivers to frequently adjust
settings, interpret data, and respond promptly to alarms,
adding to the already demanding nature of NICU care
(Villarroel et al., 2019; Gandhimathi Alias Usha &
Bharathi, 2024).

The burden on caregivers further compounds the
challenges of neonatal care. NICU staff must manage
multiple patients simultaneously, closely monitoring
vital signs, administering treatments, and making quick
decisions in response to health fluctuations. This
constant need for vigilance often leads to information
overload, as caregivers must process large volumes of
fragmented data from various monitoring devices. The
overwhelming number of alarms, many of which may
be false or non-critical, can result in alarm fatigue,
where caregivers become desensitized to alarms,
potentially reducing their responsiveness to genuine
emergencies.

4. Role of IoT in neonatal monitoring

The integration of IoT technology into NICUs
represents a groundbreaking advancement,
revolutionizing neonatal care by enabling
interconnected devices to gather, analyze, and
communicate data in real time, as shown in Figure 2.
By utilizing IoT in healthcare, particularly in neonatal
monitoring, NICUs can significantly enhance the
quality, precision, and responsiveness of care. This
innovation facilitates the continuous collection of
physiological and environmental data, enabling
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clinicians to make informed decisions and intervene
promptly in critical situations.

IoT refers to the network of interconnected devices that
communicate autonomously through a shared network.
These devices collect, transmit, and process data using
sensors, cloud-based servers, and analytical platforms
(Atzori et al., 2010; Alharbe & Almalki, 2024). In
healthcare, IoT operates through a multi-layered
architecture comprising sensing devices, network
gateways, cloud computing, and user interfaces.
Sensors attached to neonates or positioned within the
NICU environment capture vital signs such as heart
rate, respiratory rate, and oxygen saturation, along with
external parameters like temperature and humidity
(Islam et al., 2015; Rahmani et al., 2018). This data is
transmitted to cloud servers, where it is analyzed in
real time and presented to clinicians through user-
friendly dashboards or alerts. Such continuous
monitoring ensures uninterrupted oversight of neonatal
health, reducing the likelihood of missing critical
health deteriorations.

The advantages of IoT in NICU settings are manifold,
primarily revolving around improved patient outcomes
and operational efficiency. IoT-enabled systems can
detect early warning signs of complications, such as
respiratory distress or sepsis, by identifying subtle
deviations in vital signs that may not be immediately
evident to caregivers. By automating data collection
and analysis, IoT reduces the manual burden on health-

care providers, allowing them to focus on clinical
decision-making rather than routine monitoring.
Moreover, IoT systems facilitate seamless data
integration across various devices, eliminating
fragmented data silos and creating a cohesive view of a
neonate’s condition. Real-time insights provided by
IoT reduce response times, enabling faster and more
targeted medical interventions, which are critical for
the fragile health of preterm or critically ill infants.

The IoT ecosystem in NICUs comprises various
devices and technologies, all working synergistically to
enhance neonatal care. Wearable sensors attached to
neonates monitor physiological parameters such as
heart rate variability, respiration patterns, and body
temperature, illustrated in Figure 2. Environmental
sensors ensure optimal NICU conditions by tracking
ambient temperature, humidity, and noise levels, which
are crucial for maintaining the neonates' fragile
stability (Pigueiras-del-Real et al., 2024). Smart
devices such as infusion pumps, ventilators, and
phototherapy units can also be integrated into the IoT
network to provide automated adjustments based on
real-time patient data. These interconnected devices
create a comprehensive ecosystem that monitors and
predicts potential health risks, ensuring timely
interventions.

The adoption of IoT in NICU settings heralds a new
era in neonatal care, combining technological
innovation with clinical expertise to address the unique
challenges of caring for vulnerable neonates. By
offering real-time, data-driven insights and
streamlining clinical workflows, IoT has the potential
to save lives, reduce caregiver fatigue, and pave the
way for more personalized and proactive neonatal
healthcare solutions.

Figure 2 AI-enabled NICU workflow integrates multimodal data sources, preprocessing, machine learning, and decision-support
systems to assist healthcare professionals in making informed clinical decisions.
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challenges of caring for vulnerable neonates. By
offering real-time, data-driven insights and
streamlining clinical workflows, IoT has the potential
to save lives, reduce caregiver fatigue, and pave the
way for more personalized and proactive neonatal
healthcare solutions.

4.1. IoT systems and devices in the NICU

The integration of IoT systems and devices in NICUs
has revolutionized the way real-time clinical data is
gathered, monitored, and utilized to ensure optimal
care for premature and critically ill infants. These
devices, specifically tailored for NICU environments,
continuously monitor key clinical parameters,
including temperature, heart rate, respiratory rate, and
blood oxygen levels, providing healthcare
professionals with actionable insights to improve
neonatal outcomes. The deployment of IoT
technologies in NICU workflows encompasses
wearable sensors, smart incubators, and advanced
contactless monitoring systems, each contributing
uniquely to neonatal care.

Wearable and implantable sensors form the backbone
of IoT applications in the NICU, enabling the
continuous capture of critical physiological data
without disturbing the infant. Examples of such
devices include ECG patches for cardiac monitoring,
temperature sensors for thermal regulation, and pulse
oximeters for oxygen saturation measurement. These
sensors are designed with high sensitivity and comfort
in mind, ensuring that even the most delicate neonates
can be monitored effectively. By providing
uninterrupted data streams, these devices allow
healthcare providers to detect abnormalities early,
reducing the risk of adverse outcomes and minimizing
the need for invasive procedures (Grooby et al., 2023;
Wilgocka et al., 2023; Zhou et al., 2024b).

Smart incubators represent a pivotal innovation in
NICU environments, integrating IoT technologies to
monitor and control crucial environmental factors such
as temperature, humidity, and noise levels (Singh et al.,
2023; Jameel et al., 2024). Built-in sensors within
these incubators maintain a stable microenvironment
that mimics the womb, promoting neonatal health and
recovery. Temperature regulation is critical to avoid
hypothermia or hyperthermia, while maintaining
optimal humidity levels prevents dehydration and
supports skin integrity. Noise control reduces stress
and fosters proper neurological development. These
incubators often feature data connectivity, allowing
healthcare teams to remotely monitor and adjust

settings in real-time, ensuring the infant remains in a
consistently therapeutic environment.

Contactless monitoring technologies are emerging as a
game-changer in NICU care, offering non-invasive
solutions for tracking physiological parameters. (Singh
et al., 2023; Jameel et al., 2024). Infrared
thermography, for example, enables temperature
monitoring without requiring skin contact, reducing the
risk of infection and skin irritation. Video monitoring
systems can track respiratory movements, while radar-
based sensors measure vital signs like heart rate and
respiration with remarkable precision. These systems
provide a layer of convenience and safety, allowing
clinicians to monitor neonates without physical
disruption, which is particularly beneficial for
extremely fragile infants. Furthermore, these
advancements align with the growing emphasis on
minimally invasive care practices, enhancing both
patient comfort and clinical efficiency.

4.2. Data collection and management in IoT-
enabled NICU systems

The implementation of IoT-enabled systems in NICUs
generates vast amounts of real-time data, necessitating
an advanced and reliable data management framework
that prioritizes data security and patient privacy. The
architecture for collecting, storing, processing, and
retrieving data forms the backbone of these systems,
enabling actionable insights for clinicians while
ensuring compliance with regulatory standards such as
HIPAA, GDPR, and local data protection laws
(Madhusudhan & Pravisha, 2023; Qureshi et al., 2024).
This section examines the flow of data from
acquisition to integration, emphasizing the
technologies and processes that ensure efficient, secure,
and privacy-preserving data management.

IoT devices deployed in NICUs continuously gather
data from a variety of sources, including incubators,
ventilators, wearable sensors, and physiological
monitors (Grooby et al., 2023; Wilgocka et al., 2023;
Zhou et al., 2024b; Pigueiras-del-Real et al., 2024;
Pigueiras-del-Real et al., 2024). These devices measure
critical parameters such as temperature, respiratory rate,
oxygen saturation, and environmental conditions like
humidity and noise, contributing to a comprehensive,
real-time health profile of neonates. The collected data
streams are integrated into a secure, unified database,
reducing information silos and enhancing clinical
decision-making through consolidated insights (Singh
et al., 2023; Jameel et al., 2024). Secure APIs and
standardized communication protocols, such as HL7
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and FHIR, facilitate seamless data interoperability
while maintaining encryption standards to safeguard
sensitive patient information (Du et al., 2024).

The enormous volume of data generated in IoT-
enabled NICUs requires robust, encrypted storage
solutions to ensure accessibility and protection against
unauthorized access. Cloud computing plays a central
role by providing scalable, centralized storage with
end-to-end encryption that allows healthcare teams to
access patient data from secure interfaces (Khazaei et
al., 2015; Madhusudhan & Pravisha, 2023). However,
to address latency concerns and minimize exposure to
cyber threats, edge computing is increasingly
employed, processing sensitive data locally on hospital
servers or IoT gateways before transmitting only
essential insights to the cloud. This hybrid cloud-edge
model ensures that critical neonatal health data is
processed in real-time while remaining secure against
cyberattacks and unauthorized breaches (Du et al.,
2024).

Ensuring neonatal data privacy is paramount, requiring
adherence to strict compliance frameworks. Data
anonymization and pseudonymization techniques are
implemented to safeguard personally identifiable
information (PII) before storage or external analysis
(Qureshi et al., 2024). Access controls, role-based
permissions, and multi-factor authentication (MFA)
further restrict data access to authorized medical
personnel only, preventing unauthorized breaches
(Abduhari et al., 2025). Additionally, audit logs and
blockchain-based verification systems can be
integrated to enhance transparency, track data
modifications, and ensure compliance with healthcare
security standards (Das et al., 2025).

Before data can be analyzed or utilized, it must
undergo preprocessing to address noise,
inconsistencies, and potential errors, ensuring accuracy
and reliability in decision-making (Shah et al 2022a,b;
Qureshi et al., 2024). Preprocessing includes filtering
noise from sensor data, normalizing values for
consistency, and validating readings against standard
clinical benchmarks. Advanced machine learning
algorithms detect anomalies and flag suspicious data
points, ensuring that medical decisions are based on
high-quality, verifiable inputs (Mohammad, 2025).

By integrating secure data collection, encryption, real-
time processing, and privacy-preserving mechanisms,
IoT-enabled NICU systems enhance neonatal care
while ensuring the highest data security and
compliance standards. Ongoing security audits, AI-

driven anomaly detection, and adherence to evolving
regulatory requirements will further fortify patient data
protection, fostering trust in AI-driven neonatal
monitoring systems.

4.3. Benefits of IoT in enhancing neonatal care

The integration of IoT technologies in NICUs is
transforming neonatal care, offering unprecedented
opportunities to enhance patient outcomes, streamline
workflows, and improve care quality. By utilizing real-
time data and automation, IoT-enabled systems allow
caregivers to detect health issues early, reduce manual
workload, and predict patient trajectories with
precision. This section explores the key benefits of IoT
in neonatal care, focusing on automated monitoring,
reduced administrative tasks, and the application of
predictive analytics.

IoT technologies empower NICUs with continuous,
automated monitoring systems that track critical
parameters such as heart rate, respiratory rate, and
blood oxygen levels in real time. This constant
surveillance enables early detection of complications
like apnea, bradycardia, or sepsis, which are common
and potentially life-threatening in neonates (Joshi,
2019). IoT systems equipped with advanced algorithms
can identify subtle deviations from normal patterns and
alert healthcare providers before symptoms become
critical. For example, in NICUs that implemented IoT-
driven monitoring, studies have shown a marked
improvement in early diagnosis and timely intervention,
leading to better survival rates and reduced
complications. Such systems also enhance caregivers'
confidence in maintaining stable neonatal conditions,
even during periods of high patient volume.

Traditionally, NICU staff spend significant time
manually recording vital signs and other clinical
parameters. IoT systems automate this process by
continuously capturing, storing, and displaying data
from sensors, monitors, and other connected devices.
This automation not only eliminates the risk of human
error associated with manual documentation but also
frees up caregivers to focus on direct patient care
activities such as comforting infants, communicating
with families, and implementing treatment plans
(Pigueiras-del-Real et al., 2024). For instance, by
integrating IoT systems, a NICU can reduce hours
spent on routine administrative tasks, allowing nurses
and physicians to dedicate more time to addressing the
individualized needs of each infant.

IoT-enabled NICUs generate vast amounts of real-time
data, which, when analyzed using predictive

Volume 4 Issue 1, 2025 40



algorithms, can provide valuable insights into an
infant’s health trajectory. Predictive analytics can
identify early warning signs of complications, such as
infection or organ dysfunction, by analyzing subtle
trends in physiological data (Varisco, 2023; Tan et al.,
2024). For example, by applying machine learning
models to IoT data, clinicians can predict the
likelihood of an infant developing sepsis hours before
clinical symptoms appear, allowing for proactive
treatment. Additionally, predictive tools can forecast
developmental outcomes or potential long-term
challenges, enabling more personalized and preventive
approaches to care. These capabilities improve the
quality of care and build trust and confidence among
families, as healthcare providers can act swiftly and
effectively based on data-driven predictions.

4.4. Challenges and limitations of IoT in NICU
settings

While the integration of IoT technologies into NICUs
offers transformative benefits, it also presents a range
of challenges and limitations that can hinder
widespread adoption. These challenges span financial,
technical, and ethical domains, necessitating careful
consideration and strategic solutions to ensure effective
and secure implementation. This section discusses the
primary barriers to adopting IoT systems in NICUs,
focusing on costs, data security, interoperability, and
network reliability.

The implementation of IoT systems in NICUs demands
significant financial investments in both hardware and
software. Advanced sensors, monitors, and IoT
platforms that ensure real-time data collection and
processing are costly to procure and install. In addition
to the initial setup costs, ongoing expenses for system
maintenance, upgrades, and technical support can place
a considerable financial burden on healthcare
institutions. Smaller or resource-constrained hospitals
may find it particularly challenging to adopt these
systems due to limited budgets, hindering equitable
access to advanced neonatal care technologies. These
cost considerations underline the need for scalable and
cost-effective IoT solutions tailored to different
healthcare settings.

One of the most critical challenges in IoT-enabled
NICUs is ensuring the security and privacy of sensitive
neonatal data. IoT systems involve complex networks
with multiple devices transmitting real-time data,
which increases the risk of cyberattacks, data breaches,
and unauthorized access. This is especially concerning
in NICUs, where patient data is highly sensitive and
requires strict protection (Tresp et al., 2016; Hudson,

2022). Regulatory frameworks such as the Health
Insurance Portability and Accountability Act (HIPAA)
in the United States and the General Data Protection
Regulation (GDPR) in Europe mandate stringent
compliance to safeguard data privacy (Annas, 2003;
Rumbold & Pierscionek, 2017; Zaguir et al., 2024).
However, meeting these regulations can be technically
and financially demanding, requiring robust encryption
protocols, secure authentication mechanisms, and
continuous monitoring of IoT networks.

A significant technical challenge in adopting IoT in
NICUs is the lack of interoperability among devices
from different manufacturers. IoT devices often
operate on proprietary protocols, creating difficulties in
integrating them with existing hospital information
systems (HIS) and legacy devices (Nan & Xu, 2023).
This fragmentation can lead to data silos, inconsistent
data formats, and inefficient workflows, limiting the
full potential of IoT-enabled care. Standardized
communication protocols and interfaces are essential to
ensure seamless data transfer and interoperability
between devices and systems. However, achieving
standardization requires industry-wide collaboration
and regulatory incentives, which remain ongoing
challenges.

IoT devices in NICUs rely heavily on stable and
reliable network connections to transmit real-time data
continuously. Any disruption in connectivity or delays
in data transmission can compromise the quality of
care, particularly in critical situations where timely
interventions are crucial. NICU environments, often
characterized by a high density of medical equipment
and electronic devices, can experience network
congestion and interference, further exacerbating
connectivity challenges (Shah et al., 2022a). Hospitals
must invest in robust network infrastructures, such as
high-speed Wi-Fi and backup systems, to ensure
uninterrupted data flow. Additionally, edge computing
solutions can help mitigate latency issues by
processing data locally and reducing reliance on
external networks.

4.5. Ethical considerations in IoT for neonatal
monitoring

The integration of IoT systems in neonatal monitoring
introduces profound ethical questions surrounding data
privacy, ownership, and the implications of automation
in clinical decision-making. As these technologies
become increasingly sophisticated, healthcare
providers and policymakers must navigate the ethical
responsibilities associated with their deployment. The
unique vulnerabilities of neonatal patients, combined
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with the sensitive nature of their health data,
underscore the need for a robust ethical framework that
prioritizes transparency, accountability, and respect for
patient rights. This section explores two key ethical
considerations: informed consent and data ownership,
and the balance between automation and human
oversight.

One of the central ethical challenges in IoT-enabled
neonatal monitoring is the issue of informed consent.
Neonates, by their very nature, cannot provide consent
for the collection and use of their health data, leaving
this responsibility to their caregivers. This dynamic
raises questions about data ownership and the rights of
the infant as a patient. Caregivers must be fully
informed about how their child’s data will be collected,
stored, and used, as well as the potential risks and
benefits (Colom & Rohloff, 2018). However, the
technical complexity of IoT systems often makes it
difficult for caregivers to fully understand these
processes, potentially compromising informed consent.
Furthermore, ethical concerns arise regarding who
truly "owns" the data whether it belongs to the
healthcare provider, the institution, or the patient. Clear
policies must be established to ensure that data is used
solely for the benefit of the patient, with safeguards
against misuse for commercial purposes or
unauthorized sharing with third parties.

While IoT systems offer the potential for more
efficient and accurate monitoring, they also raise
ethical concerns regarding over-reliance on automation
in clinical decision-making. Automated systems,
driven by algorithms, may lack the ability to consider
contextual factors, nuances, and the complexity of
individual cases, which are often critical in neonatal
care (Racine et al., 2024). For instance, an IoT system
might flag a vital sign anomaly that is a false positive
or miss subtle but critical patterns that a seasoned
clinician might notice.

One major concern is the impact of false positives
incorrectly identifying a critical issue when none exists.
In neonatal care, false positives can lead to
unnecessary medical interventions, causing distress for
both the infant and caregivers. Frequent false alarms
may contribute to "alarm fatigue," a phenomenon in
which healthcare providers become desensitized to
alerts, increasing the risk of overlooking true
emergencies. Additionally, false positives can subject
neonates to unnecessary tests or treatments, such as
unneeded antibiotic administration, which can disrupt
gut microbiota (Rozé et al., 2020) and contribute to

antimicrobial resistance (Kronn, 2019; Mahdi et al.,
2022).

Conversely, false negatives failing to detect a true
medical issue pose a potentially greater risk. In
neonates, conditions such as sepsis (Pace & Yanowitz,
2022), respiratory distress (Fang et al., 2020), or
hypoglycemia (LeBlanc et al., 2018) can progress
rapidly, and delayed detection may result in severe
complications or mortality. An IoT system that misses
subtle but critical patterns could fail to alert clinicians
in time, leading to preventable adverse outcomes. False
negatives are particularly dangerous because clinicians
may place undue trust in technology, assuming that an
absence of alerts equates to patient stability. This over-
reliance on automated decision-making can erode
clinical vigilance, reducing proactive assessments and
timely interventions (Awhonn, 2020; Mahdi et al.,
2022).

Beyond patient safety, these errors raise broader ethical
issues, including the dehumanization of care and the
erosion of clinical expertise. If IoT technologies are
viewed as authoritative over human judgment, there is
a risk of shifting responsibility from trained
professionals to algorithms. This shift can compromise
personalized care, as neonates require highly
individualized treatment plans that consider factors
beyond what an algorithm can quantify (Kamleh et al.,
2021).

In this way, AI can play a crucial role in improving
neonatal monitoring by enhancing the accuracy and
reliability of alerts, reducing false positives and
negatives, and supporting clinical decision-making
rather than replacing it. By integrating advanced
machine learning models, real-time data analysis, and
clinician-in-the-loop validation, AI can refine alarm
systems to distinguish between true and false alerts,
minimizing unnecessary interventions while ensuring
timely responses to critical conditions. Additionally,
AI-driven systems can incorporate predictive analytics
to anticipate potential complications before they
escalate, allowing proactive care strategies tailored to
each neonate's condition. To fully harness AI’s
potential in NICU settings, it is imperative to develop
robust frameworks for continuous learning, clinician
oversight, and ethical integration, ensuring that AI
enhances neonatal care without undermining the
critical role of human expertise and judgment (Xu et
al., 2024; Jothi et al., 2025).

Volume 4 Issue 1, 2025 42



5. AI in NICU

This section introduces the foundational methodologies,
algorithms, and tools in AI and machine learning (ML)
for neonatal care, with a focus on explainability
techniques (Shah et al., 2022a) to address transparency
in decision-making. Aligned with the thesis objectives,
this chapter explores a comprehensive framework
integrating multimodal data, interpretable model
design, and specialized approaches in image, signal,
and motion analysis for neonatal care.

AI encompasses various techniques, including machine
learning (ML), deep learning, and signal and image
processing, each with unique roles in healthcare
applications. By identifying and modeling patterns
within vast datasets, AI has demonstrated success in
tasks like disease detection, prognosis prediction, and
anomaly recognition, even with minimal direct human
oversight (Topol, 2019a). In the context of neonatal
care, these techniques are applied to monitor
physiological signals, analyze visual data, and interpret
vocalizations, collectively enhancing the capability of
predictive systems.

Machine Learning (ML) (Shah et al., 2021) involves
training algorithms on datasets to make predictions or
identify patterns. Supervised learning, unsupervised
learning, and reinforcement learning are commonly
used approaches in healthcare, with supervised
learning proving particularly useful in diagnosing and
monitoring patients (Litjens et al., 2017).

Deep Learning (DL), a subset of ML, utilizes neural
networks with multiple layers to model complex
patterns within large volumes of data. Deep learning
architectures such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have
been highly effective in healthcare, especially for
image

image recognition and time-series prediction tasks,
respectively (Topol, 2019b).

Image Processing and Signal Processing techniques
allow for the extraction and analysis of clinically
relevant features from data sources like medical
imaging and ECG signals (Obermeyer & Emanuel,
2016). Image processing is key in visual diagnostics,
while signal processing plays a significant role in
analyzing physiological data, enabling the monitoring
and assessment of health parameters in real time.

The integration of these AI methodologies with
domain-specific data (clinical, image, and signal data)
enables the creation of models that can assess health
risks, predict outcomes, and support clinical decisions
across diverse healthcare applications, particularly in
neonatal care, as illustrated in Figure 3. The
application of AI in neonatal care spans multiple
domains, including predictive modeling, image and
signal processing, and decision support for clinical
workflows. AI models are trained on diverse datasets
comprising electronic health records, real-time
physiological signals, and imaging data to detect
anomalies and assess neonatal health risks. Deep
learning techniques, particularly convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs), have proven highly effective in processing
medical images and time-series data, respectively.
Furthermore, integrating AI-driven tools in NICUs
enables automated monitoring, early warning systems
for critical conditions, and improved treatment
precision. However, despite these advancements, AI
adoption in neonatal care faces challenges such as data
standardization, model interpretability, and ethical
concerns, necessitating the development of explainable
AI frameworks to enhance clinical trust and usability.

Figure 3 Illustrates integrating data sources and AI in neonatal care for clinical decision-making.
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5.1. Image processing techniques in neonatal care

Image processing plays a crucial role in healthcare AI,
allowing for the extraction of valuable information
from visual data. In neonatal care, images from clinical
imaging, facial recognition, and visual monitoring
systems are processed to detect conditions associated
with specific facial features or anatomical anomalies.
Techniques in this field start with noise reduction,
contrast enhancement, and normalization, which are
essential for improving the quality of images before
analysis (Russ, 2016). It is especially important for
neonatal facial analysis, where small anatomical
features need to be captured clearly.

Facial features and anatomical landmarks are detected
through convolutional neural networks (CNNs) and
other deep learning methods that can identify specific
visual traits related to syndromic or developmental
anomalies (Shah et al., 2024). These traits provide
early diagnostic insights. Image segmentation isolates
regions of interest, like specific facial features,
enabling more precise diagnosis (Shah et al., 2021).
Classification algorithms categorize images based on
identified features, providing a basis for further
analysis by healthcare professionals.

Zeng et al. (2024) introduces a non-contact video-
based monitoring framework for measuring vital signs
in preterm and critically ill neonates in the NICU,
addressing the limitations of traditional contact-based
methods. The research involved 50 preterm infants
(average gestational age: 37.5 ± 2.6 weeks) and
validated a framework that extracts heart rate (HR),
respiratory rate (RR), heart rate variability (HRV),
respiratory rate variability (RRV), and actigraphy using
remote photoplethysmography (rPPG) and motion-
based algorithms. The proposed system achieved HR
and RR measurements within clinical acceptance range
(±5 bpm), aligning with ANSI/AAMI EC13:2002
standards and NIH recommendations. It demonstrated
high concordance with contact-based monitors,
particularly for HRV and RRV features (R-value > 0.8),
and outperformed ECG-derived actigraphy in
classifying movement states. The research highlights
AI-driven video monitoring as a scalable, non-invasive
alternative for neonatal cardiorespiratory assessment,
with future advancements focusing on higher-
resolution cameras, improved movement
differentiation, and AI-driven sleep staging and pain
assessment.

Zhao et al. (2024) presents a deep learning-based
framework for neonatal pain detection using facial
expressions, addressing the limitations of subjective

nurse-based assessments. Traditional neonatal pain
scales, such as NIPS and N-PASS, rely heavily on
clinical judgment, often leading to variability and
delayed pain intervention. To overcome this, the
proposed framework employs a transfer learning-based
end-to-end pain detection neural network that
efficiently detects pain events using a single camera,
reducing the need for multimodal data collection and
extensive computational resources. A manual
assessment branch is integrated to handle borderline
cases, improving trust and reliability in real-world
clinical settings. Experimental results demonstrate that
the framework outperforms state-of-the-art methods by
at least 25% in accuracy, achieving 77.54% on the
MNPAD dataset and 82.35% with manual assessment
integration. The study highlights the potential for real-
time, automated neonatal pain detection, enabling more
timely and precise pain management in NICUs, with
future research focused on multimodal classification,
dataset expansion, and portable, edge-computable
models for broader clinical adoption. The study
includes neonates from 27 to 41 weeks gestational age
as part of the MNPAD dataset, ensuring a diverse
representation of neonatal pain responses.

Manworren et al.(2024) investigates the development
of a machine learning (ML) model for pain
classification in neonates, leveraging the Neonatal
Facial Coding System (NFCS), the only observational
tool associated with brain-based evidence of pain.
Using video sequences from 49 term neonates
undergoing heel lance, six experienced NICU nurses
labeled pain-related facial expressions, providing a
frame-level, nurse-informed dataset. The ML model
was trained on these labeled frames and tested using
Logistic Regression, Support Vector Machines (SVM),
and Random Forest classifiers. Results showed that the
best-performing model, a Random Forest classifier,
achieved 98% accuracy, 97.7% precision, and 98.5%
recall, significantly surpassing NICU nurses’ interrater
reliability (68%) and AUC (0.68). The most critical
pain features identified were lowered brows, closed
eyes, and deepened nasolabial furrow, which were
difficult to detect in real-time assessments. Unlike
traditional observational pain scales, which are
inconsistent and prone to subjectivity, the proposed
Pain Recognition Automated Monitoring System
(PRAMS) offers continuous, automated, and unbiased
pain detection. These findings highlight ML's potential
in enhancing neonatal pain assessment, enabling timely
interventions and reducing the risks of under- or
overtreatment associated with current nurse-dependent
methods.
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5.2. Signal processing for neonatal health monitoring

Signal processing is integral to analyzing physiological
signals, such as ECG, EEG, and vocal signals, in
neonatal care (Olmi et al., 2021; Variane et al., 2022).
These signals provide real-time data on vital functions,
offering insights into neonates' cardiovascular,
respiratory, and neurological health.
Given the high sensitivity of neonatal physiological
data, preprocessing steps like noise reduction, filtering,
and artifact removal are critical (Sweeney et al, 2012;
Rahman et al., 2024). Techniques such as wavelet
transforms, Fourier analysis and smoothing filters are
applied to enhance signal quality. Signal processing
methods capture informative features such as heart rate
variability, amplitude, and frequency bands from ECG
or EEG signals (Shah et al., 2022; Gentile et al., 2023;
Sharma & Meena, 2024). These features are essential
in assessing health risks like arrhythmia or potential
neurological delays. Time-series analysis techniques,
such as long short-term memory (LSTM) networks
(Hochreiter, 1997), are used to identify temporal
patterns in sequential data, which is particularly useful
for understanding developmental trends over time
(Abotaleb & Dutta, 2024).

Vaishnavi et al. (2024) introduce a novel deep learning
framework, EHO-DCGR net, for classifying cry
signals from premature infants to support early health
monitoring. The approach integrates Mel-Frequency
Cepstral Coefficients (MFCC), Power Normalized
Cepstral Coefficients (PNCC), Bark-Frequency
Cepstral Coefficients (BFCC), and Linear Prediction
Cepstral Coefficients (LPCC) to extract key features
from infant cries. These features are optimized using
the bio-inspired Elephant Herding Optimization (EHO)
algorithm, which selects the most relevant attributes
for classification. The Deep Convolutional Gated
Recurrent Neural Network (DCGR net) then
categorizes cry signals into five types—eair, neh, eh,
heh, and owh—associated with different infant needs
and potential health issues. Experimental results
demonstrate that EHO-DCGR net achieves an
impressive 98.45% classification accuracy, surpassing
existing deep learning models such as MFCC-SVM,
DFFNN, SVM-RBF, and SGDM. The proposed model
also outperforms traditional CNN and RNN
architectures, including AlexNet, DenseNet, LSTM,
and GRU, by improving accuracy by up to 12.64%.
These findings highlight the efficacy of EHO-DCGR
net in precise, non-invasive cry-based health
monitoring, with potential applications in neonatal care
and early detection of pathological crying patterns.
Future research will explore hybrid models and

advanced optimization techniques to further enhance
classification accuracy and robustness.

Shayegh & Tadj (2025) explores the potential of
newborn cry analysis as a non-invasive biomarker for
detecting sepsis and respiratory distress syndrome
(RDS) in neonates, particularly in resource-limited
settings where advanced diagnostic tools are scarce.
The research utilized expiratory cry segments from
newborns aged 1 to 53 days, employing self-supervised
learning (SSL) models—wav2vec 2.0, WavLM, and
HuBERT—to extract deep audio features directly from
raw cry signals without manual feature engineering. A
classifier layer was placed atop these SSL models to
categorize newborns into Healthy, Sepsis, or RDS
groups, with model fine-tuning performed using linear
and annealing learning rate strategies. Results
demonstrated that the annealing learning rate
consistently outperformed the linear strategy, with
wav2vec 2.0 achieving the highest classification
accuracy of 89.76%. Among the models, wav2vec 2.0
showed the strongest balance across all conditions,
while WavLM excelled in detecting healthy cases, and
HuBERT exhibited consistent but slightly lower
performance. However, Sepsis detection remained
challenging, primarily due to shorter cry durations and
complex acoustic variations associated with the
condition. These findings highlight the potential for
Newborn Cry Diagnosis Systems (NCDSs) to assist
clinicians in early disease detection, enabling timely
interventions and improved neonatal outcomes,
especially in low-resource clinical environments where
access to traditional diagnostic tools is limited.

Xiao & Luo(2024) examined the clinical effects of
music therapy (MT) on premature infants in neonatal
intensive care units (NICUs), focusing on its impact on
physiological stability, parent-child attachment, and
neurological function. The study included 152 preterm
infants, with 78 in the reference group (admitted
between January 2021 and January 2022) receiving
routine management and 74 in the observation group
(admitted between February 2022 and February 2023)
receiving MT in addition to standard care. The
gestational age of the infants ranged from 31 to 35
weeks. The study assessed brain function using
amplitude-integrated electroencephalogram (aEEG),
neonatal behavioral neurological assessment (NBNA)
scores, and parent-child attachment through the
pictorial representation of attachment measure
(PRAM). Results indicated no significant differences
between the groups in aEEG and NBNA scores (P >
0.05), suggesting that MT did not directly enhance
neurological development. However, the observation
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group had a significantly lower PRAM self-baby-
distance (P < 0.05), indicating improved parent-child
bonding. Additionally, pulse and respiratory rate (RR)
were significantly lower in the observation group (P <
0.05), demonstrating a stabilizing effect on vital signs.
MT also reduced the number and duration of crying
episodes in premature infants (P < 0.05), further
supporting its role in improving comfort and emotional
regulation. However, no significant differences were
observed in temperature or the incidence of
complications (P > 0.05) between the two groups. The
findings suggest that MT is a valuable, non-invasive
intervention in NICU settings, particularly for
enhancing physiological stability and parent-child
attachment, though further research is needed to
confirm its long-term benefits on neurodevelopment.

Signal analysis can be extended to vocalizations, where
features like pitch, volume, and frequency provide
clues to a neonate’s state, such as distress or comfort.
These features, once extracted, can feed into predictive
models to help healthcare providers proactively
manage neonatal health risks.

5.3. Machine learning algorithms for health-care
predictions

Various machine learning algorithms are applied to
neonatal health predictions, each selected based on
suitability for different types of data (e.g., image,
signal, or tabular data). In this section, the emphasis is
on model choices that balance predictive power with
interpretability.

Supervised learning algorithms, such as support vector
machines (SVMs), decision trees, and ensemble
methods (e.g., random forests), are commonly used in
neonatal health monitoring due to their ability to
predict discrete health outcomes (Shah et al., 2024a).
These models learn from labeled data to predict
conditions like respiratory distress, jaundice, or sepsis
in neonates.

Deep learning models, especially convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs), are instrumental for processing high-
dimensional data such as images and time-series
signals (Bairouk, 2023; Galić et al., 2025). CNNs excel
in image-based tasks, while RNNs are suited for
sequential data, making them ideal for processing ECG
data. The models provide high accuracy in prediction
tasks, though they often require explainability tools to
interpret complex decision pathways.

Jenkinson et al. (2024) presents a narrative review of
11 studies utilizing AI to predict extubation outcomes
in preterm neonates. Reported AUC values ranged
from 0.7 to 0.87, indicating moderate to high predictive
performance, though only two studies conducted
external validation, highlighting the need for further
research to confirm model generalizability. The patient
population consisted of prematurely born infants
requiring mechanical ventilation in NICUs, with an
average gestational age of 28.12 weeks. The AI
methodologies varied and included logistic regression
(MLR), decision trees (DT), random forest (RF),
gradient boosting machines (GBM), support vector
machines (SVM), and artificial neural networks (ANN).
The models utilized diverse input features, including
birth weight, gestational age, oxygen saturation (SpO₂),
and fraction of inspired oxygen (FiO₂), to predict
extubation failure and the likelihood of reintubation.
While AI has demonstrated potential in improving
extubation success predictions, the review emphasizes
the necessity of external validation, standardization of
input variables, and comparison with traditional
clinical predictors to establish efficacy, reliability, and
real-world applicability in NICU settings. Future
research should address biases in training datasets,
enhance model interpretability, and integrate AI tools
into clinical workflows to support clinical decision-
making while maintaining patient safety.

Tashakkori et al. (2024) utilize machine learning (ML)
techniques to predict NICU admission and identify key
influencing factors based on a real-world dataset of
pregnant women. The research categorizes predictive
features into four groups—demographic, pregnancy,
neonatal, and delivery factors—to analyze their impact
on NICU admission. Six ML models were employed,
including Support Vector Machine (SVM), Decision
Tree (DT), Gaussian Process (GP), Multilayer
Perceptron (MLP), Random Forest (RF), and Bagging,
with model ranking performed using the TOPSIS
method. The findings reveal that neonatal factors
(accuracy: 0.96, AUC: 0.96) are the most predictive for
NICU admission, followed by pregnancy and delivery
factors (accuracy: 0.91). The study also identifies
Bagging as the best model for demographic and
pregnancy factors, RF for neonatal factors, DT for
delivery factors, and SVM for complete case analysis.
By offering early prediction of high-risk neonates, the
results can aid healthcare providers in resource
allocation, preventive interventions, and improved
neonatal outcomes. No specific neonatal age is
mentioned in the study.
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Ensuring that AI models are interpretable in neonatal
care is essential for clinical acceptance. Explainability
tools like SHAP (SHapley Additive exPlanations)
(Lundberg & Lee, 2017), LIME (Local Interpretable
Model-Agnostic Explanations) (Ribeiro et al., 2016),
and Grad-CAM (Gradient-weighted Class Activation
Map) (Selvaraju et al., 2020) help clinicians
understand model outputs, offering transparency and
insights into feature importance. These tools enable
clinicians to evaluate predictions based on individual
patient characteristics, making the AI-driven
recommendations more actionable.

5.4. Explainability in clinical AI models

Incorporating AI in clinical decision-making requires
that these models not only perform accurately but also
offer interpretability. Unlike traditional models,
modern deep learning algorithms often operate as
"black boxes," making it challenging to understand
how inputs influence outputs, as shown in Figure 4. In
neonatal care, where clinical decisions are high-stakes,
it is essential for AI models to justify their predictions
in an interpretable manner (Shah et al., 2024). This
need is met through explainable AI (XAI) tools, which
translate complex model outputs into insights that
clinicians can readily understand, thereby fostering
trust and ensuring accountability in clinical settings.

The explainability techniques explored here SHAP,
LIME, and Grad-CAM address different aspects of
model interpretation:
* SHAP (SHapley Additive exPlanations): SHAP
(Lundberg and Lee, 2017) offers a method grounded
in game theory to quantify the contribution of each
feature in a model’s decision-making process. This
technique assigns a “Shapley value” to each feature,
representing its impact on a specific prediction. The
primary strength of SHAP lies in its global
interpretability; it provides clinicians with an
aggregated view of how individual features, such as
heart rate variability or oxygen saturation, influence
outcomes across multiple predictions. In neonatal
care, SHAP can be particularly useful in analyzing
complex time-series data or clinical indicators,
offering clinicians a clear view of which features
contribute most to the predicted outcomes. This
information can assist in refining treatment
approaches, as clinicians understand which
physiological factors are driving specific health
predictions, such as risk levels for hypoxemia or
sepsis.

* LIME (Local Interpretable Model-Agnostic
Explanations): LIME (Ribeiro et al., 2016) is a
local interpretation tool that offers instance-based
explanations by creating surrogate models to
approximate the behavior of complex AI models
around specific predictions. Unlike SHAP, LIME
provides insights at a granular level, making it
possible for clinicians to interpret individual
model predictions on a case-by-case basis. In
neonatal healthcare, LIME’s ability to focus on
specific predictions allows clinicians to analyze
each neonate’s unique circumstances, such as risk
levels for specific complications. This local
explainability is especially beneficial for precision
medicine, as clinicians can gain detailed insight
into how specific risk factors or recent
physiological changes contributed to a prediction.

* Grad-CAM (Gradient-weighted Class Activation
Mapping): Grad-CAM (Selvaraju et al., 2020) is a
visualization-based interpretability tool primarily
used in convolutional neural networks (CNNs) for
image data. Grad-CAM provides spatial
interpretability by creating heat maps that
highlight regions in an image that influence model
predictions. Grad-CAM is invaluable in image-
based analysis, such as detecting facial anomalies
in neonates that may indicate underlying
syndromic conditions. By highlighting areas of
the face that influence predictions, clinicians gain
an intuitive understanding of the model’s focus,
which can enhance the accuracy of visual
diagnostics and support early intervention.

Together, they provide a multi-faceted view that allows
clinicians to assess model behavior globally (across
many predictions) and locally (in individual cases).
This level of transparency helps ensure that AI-based
recommendations align with clinical observations,
making the insights more actionable.

6. Multimodal AI tools integration for neonatal
health monitoring

Integrating specialized AI tools designed for clinical,
ECG, facial, vocal, and motion data within a unified
analytical framework offers a comprehensive and
innovative approach to neonatal health prediction.
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Each modality-specific AI tool provides unique
insights into neonatal well-being: ECG-based models
analyze cardiac health, vocal analysis detects stress or
pain through cry recognition, motion-based AI tools
analysis identifies syndromic features and distress
signals. By combining the strengths of these AI tools,
evaluate neurodevelopmental progress, and facial the
framework enables a holistic understanding of neonatal
health, improving prediction accuracy and supporting
timely clinical interventions.

The integration of multimodal AI tools leverages
advanced fusion techniques, including early, late, and
hybrid fusion, to ensure the effective combination of
outputs from diverse data modalities. Early fusion
involves integrating raw data inputs from various
modalities, enabling models to learn cross-modality
patterns from the outset. Late fusion merges high-level
feature representations generated by individual
modality-specific models, focusing on synthesizing
insights at a decision-making level. Hybrid fusion
combines both approaches, allowing the framework to
capture complex interactions and dependencies across
modalities (Shah et al., 2023). These strategies ensure
that the multimodal framework maximizes the
predictive value of each AI tool while maintaining
robustness and flexibility in handling complex neonatal
data.

Integrating multimodal AI tools presents several
challenges, including differences in data formats,
temporal misalignments, and noise characteristics
across modalities. Effective strategies, such as domain-
specific feature engineering, data standardization, and
alignment techniques, are employed to address these
issues. Advanced preprocessing methods harmonize
the inputs, ensuring compatibility and reducing noise,
while temporal alignment techniques synchronize data
streams for meaningful analysis. These efforts are
critical to enhancing the performance and reliability of
the multimodal AI framework in clinical scenarios,
enabling more accurate, interpretable, and actionable
predictions in neonatal health monitoring (Zhou et al.,
2024; Shah et al., 2024).

Considering integration, Mukai et al. (2021) presents
an automated sleep-wake state classification system for
newborns using only body and face videos, eliminating
the need for intrusive devices like EEG. Given that
premature neonates in NICUs are exposed to excessive
light and noise, affecting their circadian rhythms and
sleep quality, the authors propose a 3D Convolutional
Neural Network (3D CNN)-based method to classify
sleep states based on Brazelton’s criteria. The study
evaluates different approaches, including whole-body
video, face-only video, and a fusion of both with time-
series smoothing and probability weighting.
Experiments conducted on 16 videos of eight newborns
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Figure 4 Illustration of a Convolutional Neural Network (CNN) pipeline with an example application for neonatal
neurodevelopment. The model processes input images through convolutional and pooling layers to extract features, followed by a
fully connected layer for classification tasks (e.g., autism spectrum disorder (Wang et al., 2023)). Explainable AI techniques,
including GradCAM, LIME, and SHAP, provide visual interpretations by highlighting critical areas within the image contributing
to the model's decision-making, enhancing transparency and clinical trustworthiness.



(all younger than 37 weeks gestation) showed that
integrating whole-body and face-only classification
with probability weighting achieved the highest
accuracy of 61.1% and a kappa score of 0.623,
demonstrating the effectiveness of combining spatial
and temporal features. The proposed method
outperforms traditional optical flow-based
classification. It provides a non-invasive, scalable
solution for neonatal sleep-wake monitoring, with
future improvements focusing on enhanced feature
integration and larger datasets for increased accuracy
and robustness.

7. Ensuring accuracy and accountability in AI-
driven neonatal care

To mitigate the risks associated with AI misdiagnoses
in neonatal care, it is crucial to establish clear protocols
for physician intervention, continuous evaluation, and
system improvement. When an AI system makes an
incorrect diagnosis, clinicians must have predefined
response mechanisms, including immediate clinical
reassessment, verification through traditional
diagnostic methods, and multi-disciplinary
consultations to confirm or refute AI-generated
predictions. AI should serve as a decision-support tool
rather than a sole authority, with human oversight
remaining central to patient care (Mitra & Rehman,
2025).

A continuous learning framework must be
implemented to enhance the reliability and accuracy of
AI-driven clinical decision support systems (CDSS).
This includes regular system audits, retrospective
analyses of AI-generated recommendations, and real-
time feedback loops where clinicians report
misclassifications for model refinement. Moreover, AI
models should undergo ongoing validation with
diverse datasets, ensuring they adapt to varying
neonatal conditions, demographic differences, and
evolving medical knowledge. Incorporating
explainable AI (XAI) techniques can further aid
clinicians in understanding AI decisions, allowing
them to identify potential biases, errors, or limitations
in predictions (Ratta et al., 2025).

AI implementation in NICU settings must follow a
dynamic, self-improving approach where errors are
systematically reviewed, flagged, and corrected. By
integrating clinician feedback, periodic recalibration,
and regulatory compliance, AI can become a more
reliable partner in neonatal care, enhancing accuracy
and trust in automated systems while maintaining the
highest patient safety and care quality.

8. Conclusion

Integrating AI and IoT into neonatal care presents a
paradigm shift in early detection, continuous
monitoring, and clinical decision-making for preterm
infants. While NICUs have improved survival rates,
AI-driven predictive analytics and IoT-enabled
monitoring systems provide an additional layer of
precision and efficiency in neonatal healthcare.
Machine learning models process multimodal data to
identify early warning signs, allowing timely
interventions that significantly improve long-term
neurodevelopmental outcomes. However, challenges
such as data privacy, interoperability, and AI
interpretability must be addressed to ensure widespread
adoption. Explainability tools are vital in making AI-
driven decisions transparent and actionable for
clinicians. Moving forward, developing robust,
multimodal AI frameworks will be crucial in
advancing neonatal care, ultimately enhancing the
quality of life for preterm infants through proactive and
personalized healthcare solutions.
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