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Abstract         
 

Spinal cord injury (SCI) simultaneously causes multiple and interrelated pathophysiological disorders throughout the 

nervous system, hindering the development of effective treatment strategies. Mechanistically, SCI triggers excitatory 

signaling activation, downregulation of the inhibitory system, neuronal death, followed by the development of new synaptic 

circuits and reorganization, leading to chronic neurological dysfunctions and mental disorders. Therefore, a simultaneous 

treatment strategy, known as overlapping treatment, is needed. Over decades, both preclinical and clinical studies have 

established that acupuncture treatment offers neuroprotection, pain attenuation, improvement of functional recovery, and 

promotes reward behaviors, suggesting potential roles of acupuncture in post-SCI treatment. Recently, the importance of 

overlapping treatment has been recognized in developing effective treatments for post-SCI pathophysiology. However, there 

has been no systematic study investigating the role of acupuncture in various SCI pathophysiology. In this review, we briefly 

address the mechanisms of post-SCI pathophysiology and discuss the potential therapeutic effects of acupuncture, suggesting 

its feasibility as a treatment for post-SCI pathophysiology. 

Keywords: Acupuncture, neuropathic pain, neurological recovery, overlapping treatment, spinal cord injury  
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Review 

1. Introduction 
 

 

Spinal cord injury (SCI) can cause sensory, motor, 

autonomic, and endocrine dysfunctions that directly 

or indirectly impact quality of life. SCI-induced 

neurological dysfunctions are often accompanied by 

emotional and motivational disorders, contributing to 

a relatively high suicide rate among SCI patients 

(Betthauser et al., 2022; Shabany et al., 2022; Watson 

et al., 2022). Long-lasting neurological dysfunctions 

after SCI result from maladaptive neurochemical and 

neuroanatomical reorganization at both spinal and 

higher nervous system levels. However, effective 

treatments for these neurological dysfunctions remain 

elusive (Brown et al., 2022; Hudson & Grau, 2022; 

Zhang et al., 2022a). Due to the multi-level and 

interrelated nature of neurological dysfunctions 

caused by SCI, a simultaneous treatment strategy, 

known as 'overlapping treatment', is needed. 

 

SCI affects neurological function throughout the 

entire nervous system, including the spinal cord, 

brainstem, thalamus, and cortex, with spatial and 

temporal processes observed in humans and other 

animals (Defrin et al., 2022; Kang et al., 2020; Liu et 

al., 2023b; Takata et al., 2023). To explore potential 

therapies for SCI-induced pathophysiology, research 

groups have used rodent models of SCI. Enhanced 

excitatory signaling and inflammation, neuronal 

death, suppression of inhibitory pathways, and 

reorganization of synaptic circuits due to axon 

degeneration or regeneration have been implicated 

(Heutink et al., 2011; Kupfer & Formal, 2022; Mei et 

al., 2022; Zhou et al., 2021). First-line 

pharmacological treatments for post-SCI 

pathophysiology include anti-inflammatory agents 

such as methylprednisolone, calcium/sodium 

channel inhibitors (e.g., pregabalin, gabapentin, 

……. 
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riluzole, lamotrigine, or amitriptyline), inhibitory 
receptor agonists (gamma-aminobutyric acid, GABA, 
opioid), and enzymes for inhibiting growth factors 
(chondroitin sulfate proteoglycans, CSPGs) (Kupfer & 
Formal, 2022). However, long-term and high-dose 
pharmacological treatments are associated with 
tolerance and mental disorders, leading to adverse 
effects and dissatisfaction with psychological or 
psychiatric disorders (Mei et al., 2022; Zhou et al., 
2021). Although cell-based engineering approaches 
promote functional recovery in post-SCI settings, their 
clinical applicability is limited by a lack of 
understanding of action mechanisms in various SCI 
pathophysiological processes. Against this backdrop, 
alternative or supplemental non-pharmacological 
therapeutics may be needed to address post-SCI 
pathophysiology. 
 
Acupuncture treatment for SCI-induced sensory, motor, 
and mental disorders has shown therapeutic efficacy 
and few side effects in both rodent and human SCI 
studies (Heutink et al., 2011; Jiang et al., 2014; Walker 
& Dreher, 2020). Acupuncture targets endogenous 
opioids, GABA, glutamate, reactive oxygen species 
(ROS), mitogen-activated protein kinase (MAPK), and 
proinflammatory pathways, which play key roles in 
SCI-induced sensory/motor dysfunction, inflammation, 
neuronal death, and various other pathophysiological 
processes. In this review, we briefly address the 
underlying mechanism of post-SCI pathophysiology 
and the potential of acupuncture as an overlapping post-
SCI treatment. Given the wide use of acupuncture 
treatment for various diseases, we focus solely on the 
potential overlapping treatments of acupuncture for 
traumatic SCI-induced pathophysiology in this review. 
 

2. Spinal cord injury pathophysiology 
 

After SCI, neurons and glial cells immediately and 
persistently increase extracellular levels of excitatory 
signaling substances, including glutamate, reactive 
oxygen species (ROS), adenosine triphosphate (ATP), 
proinflammatory cytokines, and cations, while 
inhibitory substances such as GABA, serotonin (5-HT), 
and noradrenaline (NE) are decreased in the spinal 
dorsal horn (Bringans et al., 2022; Munteanu et al., 
2022; Stefanova & Scott, 2022; Zhang et al., 2022b). 
This imbalance between excitatory and inhibitory 
substances can easily lead to enhanced neuronal 
activity, excitotoxicity, apoptosis, and inflammation, all 
of which are involved in post-SCI pathophysiology (Fan 
et al., 2022; Mech et al., 2022; Quadri et al., 2020; 
Stewart et al., 2022). 
 
The most crucial signaling cascade in post-SCI 
pathophysiology is the glutamate signaling pathway. 

The increase in glutamate and activation of its receptors 
after SCI affect inter- and intra-cellular signaling (Diaz-
Ruiz et al., 2007; Leem et al., 2010; Tai et al., 2021). 
However, the inhibitory neurotransmitter GABA, 
which counters the effects of glutamate-induced 
excitation, is also increased after SCI, albeit only 
transiently; GABAergic transmission is decreased in the 
chronic phase after SCI (Drew et al., 2004; Meisner et 
al., 2010; Mills et al., 2001). Therefore, a loss of balance 
between these two neurotransmitters may play a 
significant role in post-SCI pathophysiology. The 
activation of membrane ion channels, such as calcium 
and sodium channels, and the inhibition of potassium 
channels, accelerates post-SCI pathophysiology. For 
example, the activation of the alpha2delta subunit of the 
calcium channel modulates the activity of pain signaling 
pathways after SCI (Zeng et al., 2013). The effects of 
inhibiting the alpha2delta1 subunit using 
gabapentinoids, which are first-line treatments for SCI-
induced neuropathic pain, demonstrate the importance 
of calcium channels in post-SCI (Liu et al., 2011). 
Several previous studies have shown that SCI 
upregulates calcium/sodium channels, whereas 
potassium channels are downregulated (Boroujerdi et 
al., 2011; Boulenguez et al., 2010; Hains et al., 2003a). 
Intracellular signaling by proinflammatory cytokines, 
MAPK, and protein kinases pathways are key 
components of the inflammatory process and apoptotic 
response after SCI (Kawabata et al., 2010; Zhang et al., 
2020). Moreover, SCI-induced neuronal loss and the 
degeneration, or regeneration of axons and their 
terminals (e.g., GABAergic neuronal death and 
sprouting of primary afferent fibers) lead to maladaptive 
synaptic reconstructions that result in sensorimotor, 
bladder, and endocrine dysfunctions (Krupa et al., 2022; 
Muller et al., 2022; Whittemore et al., 2022). Finally, 
SCI-induced chronic neurological dysfunction causes 
emotional disorders characterized by decreased 
motivation and high rates of anxiety and depression 
(Sanguinetti et al., 2022). 
 
Because acupuncture can inversely modulate all the 
pathophysiological mechanisms discussed above, it 
may be a useful treatment for SCI patients. However, no 
systematic studies have been conducted to confirm this. 
 

3. Mechanism of acupuncture 
 
 

3.1 Acupoint 
 

Acupoints refer to specific points on the body where 
acupuncture needles are inserted. The optimal depth for 
needle insertion, which varies depending on the 
patient's overall condition, is crucial for ensuring both 
safety and effectiveness during acupuncture treatment 
(Chou et al., 2011; Goh et al., 2014; Lin et al., 2013). 
However, findings from functional magnetic resonance 
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imaging (fMRI) studies suggest that deeper needle 
insertion tends to have a more pronounced effect on 
brain activity (Zhang et al., 2007). 
 
Acupoints are primarily composed of mast and fat cells, 
blood vessels, muscle tissues, elastic and collagen 
fibers, and primary afferent nerve fibers. Upon needle 
insertion, various signaling molecules, including 
glutamate, neuropeptides, serotonin (5-HT), 
norepinephrine (NE), and proinflammatory cytokines, 
are activated (Hsiao et al., 2022; Kim et al., 2017; Li et 
al., 2015), all of which play crucial roles in mediating 
post-SCI pathophysiology. 
 
Stimulation of acupoints through manual or electrical 
means activates signaling pathways that connect 
peripheral nerves with higher nervous system. 
Acupoints typically exhibit lower electrical resistance 
and higher electrical conductance compared to other 
regions of the body, although these properties may vary 
depending on factors such as age and sex (Chamberlin 
et al., 2011; Fan et al., 2018b; Ma, 2021). 
 
Additionally, acupoints contain elevated levels of 
cations, including calcium, potassium, copper, and zinc 
ions, while the levels of anions, such as chloride ions, 
are relatively lower (Lee et al., 2022; Yan et al., 2009). 
Although neural acupuncture units represent a novel 
concept, their anatomical and functional distinctions 
from traditional acupoints remain unclear (Zhang et al., 
2012). 
 
3.2 Principle of acupuncture 
 

Acupuncture needles are strategically inserted into 
specific acupoints to elicit desired stimulation, as 
documented in studies by Langevin et al. (2001) and 
Zhou & Benharash (2014). Repeat stimulation of these 
points may be necessary to achieve optimal therapeutic 
outcomes, as observed in research by Park et al. 
(2010a). There are two primary methods of acupuncture 
stimulation widely utilized in clinical practice. 
 
Manual acupuncture (MA) involves mechanical 
stimulation through techniques such as vibration, 
twirling, and flicking of the inserted needle. In contrast, 
electroacupuncture (EA) combines mechanical and 
electrical stimulation. Following acupuncture 
treatment, peripheral primary afferent fibers, including 
myelinated A fibers and unmyelinated C fibers, activate 
pathways projecting to higher nervous system centers 
via the spinal cord (Kagitani et al., 2010; Li et al., 2004). 
 
EA has emerged as a predominant treatment modality 
for various pathophysiological conditions, both in 
animal models and clinical trials (He et al., 2022). It 

offers advantages in terms of frequency, duration, and 
amplitude, resulting in greater activation of descending 
inhibitory pathways involving opioidergic, 
GABAergic, and monoaminergic systems. Acupuncture 
generally suppresses excitatory intracellular protein 
kinases and proinflammatory cytokine pathways across 
the nervous system (Du et al., 2019; Lai et al., 2022). 
 

Furthermore, acupuncture activates surrounding 
connective tissues, nerve fibers, and immune cells, 
thereby modulating neural signaling through the 
regulation of specific molecular expressions. This 
modulation creates micro-environmental changes that 
help mitigate hyperexcitability-induced chronic pain. In 
summary, by providing adequate stimulation to specific 
acupoints, acupuncture can prevent, alleviate, or 
attenuate the progression of various post-SCI disorders 
through its multifaceted effects on neurons and immune 
cells. Thus, acupuncture holds promising potential as an 
overlapping treatment approach for a wide range of 
post-SCI conditions. 
 

3.3 The differences between EA and electrical 
stimulation 
 

Numerous types of electrical stimulation have been 
employed for SCI treatment, collectively known as 
spinal cord stimulation or neuromodulation (Karamian 
et al., 2022). These modalities include epidural spinal 
cord stimulation (eSCS), transcutaneous spinal cord 
stimulation (tSCS), repetitive transcranial magnetic 
stimulation (rTMS), transcutaneous electrical nerve 
stimulation (TENS), transcutaneous spinal direct 
current stimulation (tsDCS), and functional electrical 
stimulation (FES). Research studies, such as those by 
Barss et al. (2022), Krishnan et al. (2019), Rahman et 
al. (2022), and Sivaramakrishnan et al. (2018), have 
demonstrated the safety and efficacy of these 
approaches in addressing various symptoms associated 
with SCI, including pain, locomotion difficulties, 
bladder dysfunction, and autonomic disorders. 
 
Moreover, these electrical stimulation methods are 
minimally invasive, enhancing their appeal as 
therapeutic options for SCI patients. While EA targets 
specific acupoints, neuromodulation stimulates skin and 
muscle fibers at extended levels of the spinal cord. 
Consequently, acupuncture offers a more targeted 
approach compared to neuromodulation. However, both 
approaches have their respective merits and can 
contribute to the long-term management of SCI.   
 

4. Post-SCI pathophysiology and opposite roles 
of acupuncture 
 

SCI upregulates signaling molecules and pathways in 
both peripheral and central nervous systems, while 

 

  Volume 3 Issue 2, 2024                                                 111 



acupuncture has been shown to effectively mitigate this 
activity (He et al., 2022; Lai et al., 2022), thereby 
improving post-SCI pathophysiology recovery. 
 

4.1. Excitatory signaling 
 
4.1.1 Glutamate 
 

After SCI, there is a significant increase in the 
production of excitatory signaling molecules, 
particularly glutamate, in synaptic clefts, a hallmark of 
post-SCI pathophysiology. Glutamate binds to various 
glutamate receptors (GluRs), including N-methyl-D-
aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), and kainate (KA) 
receptors, as well as metabotropic GluRs, leading to a 
massive influx of calcium ions and subsequent 
excitotoxicity (Liu et al., 1999; Tufan et al., 2008; Xu et 
al., 2004). Animal studies have demonstrated that 
inhibiting GluRs is an effective approach for treating 
post-SCI pathophysiology (Gaviria et al., 2000; Kim et 
al., 2012). 
 
In one study, EA at specific acupoints inhibited NMDA 
(NR2B) receptor activity at Zusanli (ST36) and 
Shangjuxu (ST37) acupoints, while EA at Dazhui 
(GV14) and Mingmen (GV4) acupoints inhibited 
AMPA (GluR1) receptor activity in the spinal dorsal 
horn (Chen et al., 2022; Liu et al., 2017). Furthermore, 
EA at Zusanli (ST36) and Sanyinjiao (SP6) acupoints 
enhanced the antinociceptive effects of ketamine, an 
NMDA receptor blocker (Huang et al., 2004). However, 
repeated and prolonged EA may lead to tolerance due to 
a decrease in glutamate transporters (Cui et al., 2016). 
Overall, these findings suggest that EA can suppress 
aberrant glutamate-mediated signaling, potentially 
inhibiting SCI-induced excitotoxicity and exerting 
neuroprotective effects, thus attenuating central 
neuropathic pain (CNP) following SCI. 
 
4.1.2 Reactive oxygen species 
 

Following SCI, there is an overproduction of reactive 
oxygen species (ROS) and reactive nitrogen species 
(RNS), which are metabolic byproducts implicated in 
synaptic transmission. This ROS overproduction 
contributes to neuronal hyperexcitability, inflammation, 
and neuronal cell death in the damaged spinal dorsal 
horn (Lee et al., 2021; Sabirzhanov et al., 2019; Savikj 
et al., 2019; Slater et al., 2022). In the nervous system, 
abundant polyunsaturated fatty acids are susceptible to 
ROS interactions. ROS-mediated lipid peroxidation, 
induced by intracellular Ca2+-mediated sensory 
signaling pathways, generates 4-hydroxynonenal 
(HNE)/2-propenal, activating caspases and the p38-
MAPK signaling pathway, key players in apoptosis 
(Visavadiya et al., 2016; Wang et al., 2016). 

However, EA at specific acupoints, including Mingmen 
(GV4), Shuigou (GV26), Renzhong (DU26), and 
Fengfu (DU16), significantly reduces ROS-mediated 
oxidative stress and MAPK activity post-SCI, 
enhancing antioxidant activity and functional recovery 
(Cheng et al., 2020; Choi et al., 2012; Dai et al., 2021). 
A quantitative meta-analysis revealed that acupuncture 
increases the expression of major antioxidants, such as 
superoxide dismutase (SOD) and glutathione 
peroxidase (GPx) (Zhao et al., 2022). These findings 
collectively suggest that EA can inhibit ROS-mediated 
signaling, thereby promoting functional recovery after 
SCI. 
 

4.1.3 Apoptosis 
 

SCI-induced neuronal death, primarily through 
apoptosis, is a major pathophysiological process leading 
to neuroanatomical reorganization and exacerbated loss 
of inhibitory synaptic circuits, such as GABAergic 
circuits (Hwang et al., 2016; Rafati et al., 2008). The 
influx of massive Ca2+ following SCI stimulates neural 
cell apoptosis (Liu et al., 2023a). However, EA can 
inhibit neuronal apoptosis. For instance, acupuncture at 
specific acupoints, including Shuigou (GV26) and 
Yanglingquan (GB34), attenuates the activity of 
caspase-3, tumor necrosis factor-alpha (TNF-α), 
interleukin-1 beta (IL-1β), interleukin-6 (IL-6), nitric 
oxide synthase (NOS), and matrix metalloproteinase-9 
(MMP-9), thus preventing neuronal apoptosis post-SCI 
(Choi et al., 2010). Additionally, acupuncture at Jizhong 
(GV6) and Zhiyang (GV9) acupoints activates anti-
apoptotic signaling via B-cell lymphoma (Bcl)-2 and 
Bcl-3 (Liu & Wu, 2017). Furthermore, at Dazhui 
(GV14) and Mingmen (GV4) acupoints, it enhances 
phosphatidylinositol-3 kinase/protein kinase 
B/mammalian target of rapamycin (PI3K/AKT/mTOR) 
signaling pathway activity, while reducing phosphatase 
and tensin homolog (PTEN) and caspase-3 levels (Li et 
al., 2020). EA at multiple acupoints also inhibits the 
mitochondrial apoptotic pathway by activating the 
PI3K/Akt and extracellular signal-regulated protein 
kinase (ERK) 1/2 signaling pathways in a rabbit model 
of SCI (Renfu et al., 2014). Finally, EA at Jiaji (EX-B2) 
enhances locomotion by promoting autophagy and 
reducing necroptosis, crucial in the cell loss and tissue 
damage post-SCI (Hongna et al., 2020). Collectively, 
these findings suggest that EA can effectively inhibit 
neuronal apoptosis, thereby promoting functional 
recovery after SCI. 
 
4.1.4 Glial activation and inflammation 
 

Glial cells, including astrocytes, microglia, and 
oligodendrocytes, play crucial roles in synaptic 
structure and transmission  within  the  nervous  system.  
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SCI-induced glial activation can lead to hypertrophy 
and the release of gliotransmitters, influencing local 
synaptic transmission primarily in the spinal dorsal horn 
due to the short branches of activated glial cells (Gaudet 
& Fonken, 2018; Gwak et al., 2017). EA has been 
shown to inhibit glial activation and modulate neuron-
glia interactions (Gong et al., 2020; Yan et al., 2023; 
Zhang et al., 2022c). EA-induced glial inhibition and 
pain relief may involve the release of interleukin-10 
(IL-10), an anti-inflammatory cytokine. The analgesic 
effects of EA, particularly at the Sanyinjiao (SP6) and 
Yanglingquan (GB34) acupoints, are blocked by spinal 
IL-10 antibodies, underscoring the role of the IL-10 
pathway in EA-induced analgesia (Dai et al., 2019). 
 
EA, particularly at the Zusanli (ST36) acupoint, inhibits 
astrocytic and microglial activation, resulting in 
decreased expression of glial fibrillary acidic protein 
(GFAP) and CD11b, markers of astrocytes and 
microglia, respectively. This leads to reduced levels of 
MMP-9, MMP-2, TNF-α, IL-1β, and chemokines 
(Chen et al., 2020). Interestingly, acupuncture exhibits 
bidirectional effects on macrophages during 
inflammation. EA at GV acupoints enhances the 
activity of M2 macrophages, which suppress 
inflammation and support tissue repair, while also 
increasing the levels of anti-inflammatory molecules 
such as IL-10 and neurotrophin-3 (NT-3). Conversely, 
it decreases the expression of M1 macrophages, thereby 
reducing the inflammatory response (Zhao et al., 2017). 
 
Additionally, EA at specific acupoints, including 
Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36), 
and Ciliao (BL32), suppresses the Ras homologous 
(Rho) small GTPase/Rho-associated protein kinase 
(Rho/ROCK) signaling pathway, attenuates the 
inflammatory response, and promotes axonal growth 
post-SCI (Hong et al., 2021). Moreover, EA at Jiaji 
(EX-B2) and other acupoints inhibits astrocytic 
activation and glial scarring, facilitating hindlimb motor 
function recovery after SCI (Liu et al., 2013a). By 
inhibiting glial activation and inflammatory processes, 
EA reduces tissue damage and promotes functional 
recovery following SCI.   
 
4.1.5 Excitatory intracellular signaling 
 

The MAPK family, along with protein kinase A/C 
(PKA/PKC), cyclic adenosine monophosphate (cAMP), 
calcium/calmodulin-dependent protein kinase 
(CaMKII), and oxidative stress, are key players in 
excitatory intracellular signal transduction pathways 
implicated in post-SCI pathophysiology (Bai et al., 
2023; Cheng et al., 2022; Fakhri et al., 2022). 
Pharmacological interventions targeting these pathways  

 
have shown promise in promoting functional recovery 
and alleviating central neuropathic pain (CNP) 
(Canavan et al., 2022; Flack et al., 2022). Acupuncture 
has demonstrated efficacy in inhibiting activity within 
these same signaling pathways. 
 

For instance, EA applied at the Shuigou (GV26) and 

Yanglingquan (GB34) acupoints effectively inhibits 

astrocyte-mediated c-Jun N-terminal kinase (JNK) 

signaling and microglia-mediated p38MAPK/ERK 

signaling in patients experiencing SCI-induced 

neuropathic pain (Choi et al., 2012; Lee et al., 2013). 

Additionally, EA at the GV acupoints activates 

peripheral afferent nerves, leading to the release of 

calcitonin gene-related peptide (CGRP) and the 

upregulation of alpha-CaMKII. This, in turn, promotes 

the release of neurotrophin-3 (NT-3) and facilitates 

functional recovery following SCI (Xu et al., 2021). 
 
Collectively, these findings suggest that EA has the 
potential to attenuate excitatory intracellular signaling 
pathways and enhance functional recovery in 
individuals with SCI. 
 
4.2. Descending pain inhibitory pathways 
 

Descending inhibitory pathways, including opioidergic, 
GABAergic, and monoaminergic systems (e.g., 
adrenergic, serotonergic, and dopaminergic pathways), 
play a pivotal role in regulating pain signaling within 
the spinal dorsal horn (Bannister & Dickenson, 2017; 
Kwon et al., 2014). Activation of these pathways can 
induce spinal analgesia across various 
pathophysiological conditions (Kucharczyk et al., 2022; 
Nemoto et al., 2022; Otsu & Aubrey, 2022; Tinnermann 
et al., 2022). 
 
Acupuncture has been shown to effectively activate 
descending inhibitory pathways, thereby modulating 
pain perception (Ma et al., 2022). Additionally, 
acupuncture can engage ascending pathways that 
project to inhibitory centers in the brain stem (e.g., 
amygdala [AMG]) and midbrain structures (e.g., 
periaqueductal gray [PAG]), as well as cortical regions 
like the anterior cingulate cortex (ACC) (Duan et al., 
2020; Murotani et al., 2010; Xu et al., 2022; Zhang et 
al., 2018). 
 
In the context of SCI, recent studies have indicated a 
reduction in spinal neurons projecting to the PAG, 
suggesting impairment of descending inhibitory 
pathways (Brown et al., 2022). It's important to note that 
these descending pathways interact with relay sites and 
exert their effects synergistically. 
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4.2.1 Opioid 
 

Descending opioidergic pathways play a crucial role in 
spinal inhibition, with EA serving as a modulator of this 
system. EA activates the opioidergic system, triggering 
the release of endomorphins, enkephalins, beta-
endorphins, and dynorphins in an intensity-dependent 
manner (Cabyoglu et al., 2006; Han, 2003). Moreover, 
it can activate opioid receptors in a frequency-
dependent manner. 
 
Low-frequency (2 Hz) EA, applied at acupoints like 
Zusanli (S36) and Sanyingjiao (SP6), exerts its 
analgesic effects through μ- and δ-opioid receptors, 
whereas high-frequency (100 Hz) EA acts via κ-opioid 
receptors in rat spinal cords (Chen & Han, 1992). 
Additionally, EA at 2 and 60 Hz at acupoints like 
Baihui, Santai, Ergen, and Sanyangluo induces the 
release of met-enkephalin and β-endorphin in the higher 
nervous system of goats, while 100 Hz EA prompts the 
release of dynorphin-A in the spinal dorsal horn (Cheng 
et al., 2012). 
 
Furthermore, the analgesic effects of EA are partially 
mediated by orphanin FQ (OFQ), an endogenous opioid 
peptide (Fu et al., 2007; Lu et al., 2010). Collectively, 
these findings suggest that EA-induced activation of the 
opioidergic system facilitates spinal inhibition through 
descending inhibitory pathways. 
 
4.2.2  GABA 
 

GABA serves as a pivotal inhibitory neurotransmitter, 
and the loss of spinal GABAergic inhibition is a 
significant mechanism in SCI pathophysiology. SCI 
induces the downregulation of GABAergic inhibitory 
tone by promoting GABAergic cell death, reducing the 
expression of the GABA synthesizing enzyme glutamic 
acid decarboxylase (GAD; GAD65 and GAD67), and 
increasing GABA transporters (Bhagwani et al., 2022; 
Gwak et al., 2008). In the spinal dorsal horn, 
GABAergic interneurons receive inputs from peripheral 
and descending inhibitory pathways, primarily 
originating in the PAG. Upon activation, these neurons 
release GABA, exerting inhibitory effects through 
GABAA and GABAB receptors. 
 
EA enhances spinal GABAergic function by 
upregulating GABA receptors in the spinal dorsal horn 
(Jiang et al., 2018; Wang et al., 2020). Low-frequency 
(2 Hz) EA at Zusanli (ST36) inhibits neuropathic pain 
by activating GABAA and GABAB receptors in the 
spinal cord (Park et al., 2010c). Similarly, both low- (2 
Hz) and high-frequency (100 Hz) EA at acupoints like 
Zusanli (ST36) and Yanglingquan (GB34) suppress 
neuropathic pain by increasing GABAA receptor 

expression in the spinal dorsal horn (Li et al., 2022). In 
another study, both low- (2 Hz) and high-frequency 
(100 Hz) EA at Zusanli (ST36) and Sanyinjiao (SP6) 
acupoints alleviated pain through modulation of the 
GABAA receptor (Silva et al., 2011). 
 

Overall, these findings suggest that EA can effectively 
enhance spinal GABAergic function following SCI. 
 

4.2.3 Monoamine descending inhibitory pathways 
 

 

4.2.3.1 Adrenergic Pathways  
 

Adrenergic and noradrenergic pathways originate 
primarily from the raphe nuclei (RN), locus coeruleus 
(LC), and PAG regions, including areas A1–A7. The 
LC, containing a significant cluster of noradrenergic 
cells, interacts with the PAG, amygdala, and 
hypothalamus. Noradrenergic projections to the spinal 
cord, known as coeruleospinal pathways, express 
adrenergic receptors, particularly the α2-adrenoceptor, 
which are widely distributed in the brain and spinal 
cord, contributing to spinal antinociception (Proudfit & 
Clark, 1991; Rodriguez-Palma et al., 2022). 
 
Both low-frequency (4 Hz) and high-frequency (100 
Hz) EA at Zusanli (ST36) acupoints increase the 
expression of c-Fos and dopamine β-
hydroxylase/tyrosine hydroxylase (DBH/TH)-
expressing neurons in the LC, while low-frequency (2 
Hz) EA at the same acupoint inhibits them by 
decreasing TH expression (Lee & Beitz, 1993; Park et 
al., 2010a), indicating frequency-dependent modulation 
of LC activity. Moreover, EA at Zusanli (ST36) inhibits 
the activity of spinal dorsal horn neurons by affecting 
α2- and β-adrenoceptors in presynaptic terminals, as 
well as inhibiting postsynaptic neurons in the spinal 
dorsal horn (Choi et al., 2015). Activation of the α2-
adrenoceptor promotes motor function recovery by 
suppressing the expression of pro-inflammatory 
cytokines such as IL-1β, TNFα, and IL-6 after SCI (Gao 
et al., 2019). 
 

These findings collectively suggest that EA influences 
noradrenergic pathways and may contribute to pain 
relief and locomotor recovery following SCI. 
 
4.2.3.2 Dopaminergic Pathways  
 

In the midbrain, clusters of dopaminergic (DAergic) 
neurons are found in the ventral tegmental area (VTA), 
substantia nigra (SN), and hypothalamus (areas A8–
A16), with the hypothalamic region (A11) representing 
a significant descending inhibitory pathway projecting 
to the spinal cord (Koblinger et al., 2014). Dopamine 
signaling in the spinal cord is crucial for regulating 
locomotion, micturition, and pain, while in the higher 
nervous system, dopamine is integral to the reward 
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system (Puopolo, 2019; Qiao et al., 2021; Sharples et 
al., 2014). SCI suppresses D1 receptor-mediated ERK 
1/2 activation in the PAG, a key component of 
dopamine-mediated antinociception (Meyer et al., 
2009; Voulalas et al., 2017). 
 
EA at frequencies ranging from 6 to 21 Hz performed at 
Dailing (PC7) acupoints increases striatal dopamine 
levels. Conversely, high-frequency (100 Hz) EA 
performed at Dazhui (DU14) and Baihui (DU21) 
acupoints inhibits TNF-α and IL-1β-mediated loss of 
DAergic neurons in the substantia nigra (SN), 
indicating direct modulation of brain dopamine activity 
by EA (Liu et al., 2004; Shen & Lai, 2007). Recent 
reports suggest that activation of dopamine D1 
receptors inhibits the inflammatory process and 
promotes neuronal survival, underscoring the beneficial 
effects of enhanced DAergic activity on post-SCI 
pathophysiology (Jiang et al., 2023). 
 
 

Therefore, EA-induced modulation of DAergic activity 
could potentially improve sensory, motor, endocrine, 
and reward system function following SCI. 
 
4.2.3.3 Serotoninergic Pathways  
 

The nucleus raphe magnus (NRM), located in the 
brainstem, contains numerous serotonergic neurons. 
The caudal region of the NRM (B1–B3) consists of 
descending serotonergic pathways projecting to the 
spinal cord. Studies have indicated that SCI is 
associated with a reduction in caudal 5-HT fibers and an 
increase in rostral 5-HT fibers, which may contribute to 
the development of pain, locomotor dysfunction, and 
bladder dysfunction (Perrin & Noristani, 2019). EA 
performed at acupoints such as Changqiang (GV1), 
Yaoshu (GV2), Jizhong (GV6), and Zhiyang (GV9) 
following SCI has been shown to promote extensive 
regeneration of 5-HT fibers in the injured area, along 
with increased expression of calcitonin gene-related 
peptide (CGRP) and improvements in motor function 
(Ding et al., 2009). Although there isn't direct evidence 
linking EA to changes in 5-HT receptor expression, 
elevated spinal 5-HT levels have been associated with 
improved locomotor recovery and attenuation of 
neuropathic pain following SCI (Fouad et al., 2010; 
Hains et al., 2003b). 
 

5. Acupuncture on post-SCI and reward system 
 

Balancing the benefits and risks of long-term 
pharmacological treatments is crucial in managing post-
SCI pathophysiology. Prolonged use of certain 
medications may lead to sensorimotor and neurological 
dysfunction, and even potential abuse, which can 
further impact functional recovery and exacerbate the 
condition. Studies have shown that patients who abuse 

medications after SCI often experience poorer 
outcomes (Harper et al., 2022). 
 

While the focus of acupuncture research has primarily 
been on its effects on chronic pain, mental health 
disorders, and addiction through modulation of the 
brain's reward system (Kwon et al., 2022; Pan et al., 
2022; Wang et al., 2017), less is known about its 
potential effects in the context of SCI. Understanding 
how acupuncture may influence the brain's reward 
pathways and its implications for SCI management 
could provide valuable insights into developing more 
holistic and effective treatment approaches. 
 

5.1 Reward mechanism  
 

The mesolimbic dopamine system, centered around the 
ventral tegmental area (VTA) and nucleus accumbens 
(NAc), plays a crucial role in the brain's reward 
circuitry. In this system, GABAergic activity within the 
VTA regulates dopaminergic (DAergic) activity, with 
dopamine levels in the NAc influencing the strength of 
reward signals (Lammel et al., 2014; Sackett et al., 
2017). The NAc receives inputs from various cortical 
areas and the amygdala, which can be activated by 
acupuncture or nociceptive stimuli (Chang et al., 2021; 
Pan et al., 2022). 
 

Chronic depletion of dopamine in the NAc, often 
associated with prolonged use of dopamine, can lead to 
heightened craving for addictive substances and 
exacerbate negative reinforcement mechanisms. 
Previous studies have indicated that SCI can induce 
alterations in GABAergic activity within the VTA, 
subsequently leading to decreased DAergic activity (Ko 
et al., 2018). These changes in brain networks following 
SCI may contribute to the dysregulation of reward 
processing commonly observed in individuals with SCI 
(Hill et al., 2018; Yague et al., 2011). 
 
Modulating GABAergic activity within the VTA 
through EA could potentially mitigate dysfunction 
within the reward system induced by SCI. By 
influencing GABAergic neurons in the VTA, EA may 
help restore the balance of neurotransmitter activity 
within the mesolimbic dopamine system, thereby 
addressing reward dysregulation and its associated 
consequences in individuals with SCI. 
 

5.2 Acupuncture and reward mechanism 
 

In a previous study, we demonstrated that acupuncture 
at Shenmen (HT7) inhibited GABAergic activity in the 
VTA via μ-opioid receptors and increased dopamine 
levels in the NA; these effects were associated with a 
reduction in self-administration of ethanol (Yang et al., 
2010). In another study, acupuncture at Shenmen (HT7) 
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activated VTA GABA neurons and enhanced cocaine-
induced DA release in the NAc (Jin et al., 2018). These 
results suggest that the effects of acupuncture on 
addictive behavior are mediated by different pathways, 
depending on the substance. 
 
We have also found that acupuncture at Shenmen (HT7) 
results in peripheral ulnar nerve activation and biphasic 
control of GABAergic activation in the VTA; these 
effects may be mediated by ascending sensory pathways 
(Chang et al., 2017). In an fMRI study, acupuncture 
enhanced functional connectivity in the VTA, PAG, and 
AMY, suggesting that it may simultaneously modulate 
both descending inhibitory and reward pathways (Cao 
et al., 2021). Taken together, the data suggest that 
acupuncture at specific acupoints could improve both 
pain and psychiatric conditions involving mesolimbic 
system dysfunction. 
 

6. Acupuncture and neurological recovery 
 
SCI results in acute and chronic sensory, motor, bowel, 
autonomic, and mental dysfunctions. As described 
above, EA can inhibit the inflammatory response and 
glial activation, thereby promoting neurological 
recovery after SCI. Additionally, acupuncture 
reportedly increases the levels of growth factors, NTs, 
and neuropeptides, all of which play a role in 
neurological recovery after SCI. Although EA alone can 
improve walking performance (i.e., stride duration and 
length, as well as walking speed) in SCI rats (Escobar-
Corona et al., 2017), most studies have documented 
neurological improvements in response to acupuncture 
after SCI. The treatment was combined with cell-based 
engineering, such as the transplantation of neural stem 
cells (NSCs). Notably, acupuncture promotes the 
differentiation, migration, and survival of transplanted 
NSCs, as well as functional recovery via the production 
of NT and neuropeptides (NT-3 and CGRP) in SCI rats 
(Zeng et al., 2022). These results suggest that 
acupuncture facilitates the reconstruction and repair of 
ascending and descending pathways in injured spinal 
cords.  
 

In the spinal ventral horn, peripheral nerve networks 

(PNNs) impede the recovery of locomotion after SCI. 

EA stimulation of Jiaji (EX-B2) suppresses PNNs and 

promotes the recovery of locomotion following SCI, as 

indicated by the increased Basso–Beattie–Bresnahan 

(BBB) scores (Hu et al., 2020). Recently, it was shown 

that combined treatments with EA and low-frequency 

pulsed current stimulation (GV electroacupuncture) 

regulated transcriptome gene expression, resulting in 

nerve fiber regeneration, enhanced functional recovery 

after SCI (via the production of NT-3), and 

neuroprotective effects (Xiao et al., 2022; Zeng et al., 

2022). EA performed at the Dazhui (GV14) and 

Mingmen (GV4) acupoints decreased SCI-induced 

Delta1, Presenilin1, Hes1, and Hes5 expression, 

resulting in locomotor improvements and neural repair 

(Wang et al., 2021). Additionally, performed at 

Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36), 

and Ciliao (BL32), it promoted the recovery of hindlimb 

locomotion and suppressed the Rho-A and ROCKII 

signaling pathways (Min et al., 2017). In a recent study, 

EA at Mingmen (GV4) and Dazhui (GV14) inhibited 

miR-34a-3p and programmed cell death 6 (miR-34a-

3p/PDCD6), which are proapoptotic; had 

neuroprotective effects on motor neurons; and 

promoted axonal regeneration after SCI (Ma et al., 

2022). Finally, EA improved the functional recovery, 

and thus quality of life, of SCI patients (Tan et al., 

2022). Taken together, these results suggest that EA 

reduces neuronal damage by regulating apoptotic 

pathways, thus promoting functional recovery after 

SCI. 
 

7. Clinical trials of acupuncture 
 

To relieve pain, acupuncture is increasingly popular 

among SCI patients, either alone or in combination with 

other treatments. Incomplete SCI patients tend to 

undergo acupuncture treatment more often than 

complete SCI patients, probably because an intact 

nervous system is important for desirable outcomes 

after acupuncture. Moreover, the development of 

neuropathic pain after SCI depends on the sparing of 

dorsal horn neurons (Dietz et al., 2022; Fan et al., 

2018a). However, negative effects of acupuncture have 

also been reported, including discomfort and fatigue 

after long sessions. Additionally, a few patients have 

reported a transient increase in pain sensitivity (Nayak 

et al., 2001). A small comparative study involving 

quantitative sensory testing (QST) reported no 

difference in outcomes between six sessions of 

acupuncture and three weeks of gabapentin treatment 

(Chen et al., 2021), suggesting the effectiveness of 

acupuncture in reducing pain. However, some people 

believe that acupuncture treatment can cause infection, 

tissue damage, and even hemorrhage, although adverse 

effects are rarely reported and are transient (Jindal et al., 

2008; Karpatkin et al., 2023; Park et al., 2010b; Xu et 

al., 2013). In addition, clinical trials demonstrate that 

long-term acupuncture treatment can facilitate bladder, 

sensory, and functional recovery after SCI (Liu et al., 

2013b; Xiong et al., 2021). Recently, Veterans Affairs 

providers expressed positive attitudes toward 

acupuncture for pain treatment, neuroprotection, and 
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functional recovery after SCI (Castaneda et al., 2021; 

Coker et al., 2022; Huang et al., 2022). 

 

8. Combined acupuncture therapy 
 

In various animal models, although acupuncture has 
been effective as a post-SCI treatment, its efficacy was 
enhanced when combined with drugs or other therapies. 
For example, EA combined with celecoxib (an anti-
inflammatory), milnacipran (a selective 
serotonin/noradrenaline reuptake inhibitor), gabapentin 
(a calcium channel inhibitor), lidocaine (a sodium 
channel blocker), and dexmedetomidine (an α2-
adrenoceptor agonist) had stronger and longer-lasting 
analgesic effects in the treatment of post-SCI rats and 
goats via anti-inflammatory and antioxidative effects 
(Alvarado-Sanchez et al., 2019; Cui et al., 2017; Dai et 
al., 2021; Mi et al., 2008). In other studies, while EA 
alone attenuated pain, both inflammation and 
neuropathic pain were improved by EA combined with 
a glial activation inhibitor (fluorocitrate or 
propentofylline) (Liang et al., 2010; Sun et al., 2006). 
Moreover, combining acupuncture with antioxidant or 
anti-inflammatory agents may facilitate the recovery of 
urinary and motor functions, prevent apoptosis, reduce 
hydroxyl radical levels and lipid peroxidation, and have 
a neuroprotective effect on post-SCI (Alvarado-
Sanchez et al., 2019; Ding et al., 2022b; He et al., 2021). 
In other studies, combining acupuncture with 
mesenchymal stem cells (MSCs) or adult stem cell 
transplantation enhanced synaptic reconstruction and 
functional recovery compared to acupuncture alone 
(Tang et al., 2020; Zeng et al., 2022). Furthermore, in 
those studies, the survival, proliferation, and migration 
of transplanted cells were facilitated by the release of 
CGRP and NT-3 within the injured spinal cord. In 
addition, EA combined with selective serotonin 
reuptake inhibitors (SSRIs) relieves anxiety to a greater 
degree than SSRIs alone (Sabbagh Gol et al., 2021). 
Finally, acupuncture combined with physical therapy 
enhances the recovery of motor and neurological 
functions (Regnier & Most, 2022). Taken together, the 
results indicate that acupuncture has synergistic effects 
with other treatments and could potentially reduce the 
drug doses required for efficacy (Regnier & Most, 2023; 
Zheng et al., 2023; Zhong et al., 2023). 
 

9. Limitation and future study 
 

As detailed above, there is growing evidence of the 
efficacy of acupuncture in relieving pain and enhancing 
functional recovery after SCI. However, while animal 
and clinical studies of SCI have shed light on the 
mechanisms underlying the therapeutic effects of 
acupuncture, controversy remains regarding its efficacy 
for SCI patients in Western countries. This situation is 

partly due to weaknesses in acupuncture feasibility 
studies, including a lack of blinding, small cohorts, and 
a lack of standardization. International collaborations 
dedicated to researching the efficacy of acupuncture 
therapy for SCI could be helpful in this regard (Wei et 
al., 2022). 
 
In this review, we focused on mechanical and electrical 
acupuncture. However, other approaches exist, such as 
treating specific acupoints with diluted bee venom 
(DBV, apipuncture) (Lin & Hsieh, 2020). Bee venom 
has anti-inflammatory, antioxidant, and anti-apoptotic 
properties. Apipuncture performed at the Zusanli 
(ST36) and Yaoyangguan (GV3) acupoints facilitates 
locomotor recovery and inhibits inflammation via an 
increase in IL-10 after SCI (Nascimento de Souza et al., 
2017). Furthermore, warm acupuncture (WA) enhances 
locomotor recovery via NSC proliferation, 
downregulation of MAPK pathways and glial 
activation, suggesting anti-inflammatory effects and 
inhibition of apoptosis after SCI (Ding et al., 2022a; Xu 
et al., 2019). 
 
However, the main weakness of acupuncture treatment 
protocols is the difficulty in managing acupuncture 
patients over treatment periods that last several months, 
particularly in studies with extensive follow-ups. 
Moreover, standardized evaluation protocols are 
lacking; visual analog scales, numeric rating scales, and 
the Brief Pain Inventory have all been used to evaluate 
the effect of acupuncture on neuropathic pain in SCI 
patients (Almeida et al., 2022). Improvements in needle 
materials and enlarging the contact surface of the 
acupuncture needle can be beneficial. For example, we 
previously reported that EA performed at Shenmen 
(HT7) with an extended surface area of acupuncture 
needle (i.e., a "high surface area porous needle") 
enhanced the electrophysiological and behavioral 
effects as well as better outcomes in the treatment of 
colorectal cancer in rat models (In et al., 2016; Lee et 
al., 2017). We speculate that a larger surface area may 
be more important than deep needle insertion in 
improving post-SCI pathophysiology. 
 

10. Summary 
 

Currently, the main treatments for SCI are surgical, 
pharmacological, neuromodulation, and stem cell 
treatments (Eller et al., 2022; Fehlings et al., 2021; 
Geisler et al., 2023; Naro et al., 2022; Ribeiro et al., 
2023). However, there is increasing scientific evidence 
that acupuncture can enhance these treatments. 
Acupuncture is a noninvasive, nonsurgical approach 
that can be applied immediately after SCI. However, 
long-term acupuncture treatment is needed to achieve 
desirable outcomes, and standardized protocols are 
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currently lacking (Huang et al., 2022). 
Acupuncture at acupoints containing nerve fibers, mast 
cells, immune substances, and muscles can modulate 
the physiological functions of both the peripheral and 
central nervous systems (Lin et al., 2022; Xiao et al., 
2018). When myelinated and unmyelinated primary 
afferent fibers are activated by acupuncture, immune 
response mediators activate ascending signaling 
pathways. It is believed that acupuncture inhibits 
hyperexcitability in the nervous system by activating 
descending inhibitory pathways, including MAPK, 
protein kinase, Wnt/mTOR, and calcium-mediated 
intracellular signaling pathways. Additionally, it 
inhibits proinflammatory cytokines and oxidative 
stress, thus having neuroprotective effects and 
promoting functional recovery. Finally, it modulates 
activity in the brain reward system; all these actions can 
improve post-SCI pathophysiology. 
 
Both preclinical and clinical studies have shown that 
acupuncture can improve SCI-induced 
pathophysiology. However, such studies have varied 
widely in terms of stimulation intensity, treatment 
duration, age of the participants, and needle insertion 
depth. SCI is characterized by acute, early, 
intermediate, and chronic phases, ultimately resulting in 
reorganization of the nervous system (Hachem & 
Fehlings, 2021; Lima et al., 2022). The death of neurons 
and axons at the site of injury is followed by the loss of 
synaptic connections, destruction of the blood barrier, 
and the recruitment of immune cells. Although 
regeneration and repair subsequently occur, the primary 
pathophysiological process continues, resulting in glial 
scar formation and enhanced pain signaling. Therefore, 
spatial and temporal studies will be needed to prove the 
effectiveness of acupuncture in post-SCI 
pathophysiology. 
 

11. Conclusion 
 
Many studies have described the physiological, 
neurochemical, and neuroanatomical properties of 
acupoints, as well as the mechanisms underlying the 
effects of acupuncture. SCI is characterized by complex 
pathophysiological processes, making it difficult to 
devise effective treatment strategies. A recent study 
suggested the potential of overlapping treatments to 
address the interaction between mental and physical 
pain (Bouchatta et al., 2022); this could be applicable to 
SCI patients (Griffin & Bradke, 2020). This review 
indicates that acupuncture can contribute to 
neuroprotection, pain attenuation, functional recovery, 
and repair of the brain reward system, which could serve 
as a potential overlap in post-SCI treatment. 
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