
Spatial interactions impact on Ca-driven synaptic plasticity:
An ionic cable theory perspective
Nicolangelo Iannella1,∗, Roman R. Poznanski2

1The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316 Norway
2Integrative Neuroscience Initiative, Melbourne Australia 3145

∗Corresponding author: n.l.iannella@ibv.uio.no
DOI:https://doi.org/10.56280/1631287433

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attributions

(CC BY) license (https//creativecommons.org/licenses/by/4.0/)

Received: 26 November 2023 Accepted: 15 May 2024 Online published 31 May 2024

Abstract

We extend our previous paper on deriving an approximate analytical solution to a nonlinear cable equation
by including other ion channels known to exist in neurons and reaction-diffusion-based calcium dynamics
that lead to a system of nonlinear cable equations. Here, excitable dendrites possess clusters of voltage-
activated ion channels that are discretely distributed as point sources or hotspots of transmembrane
current along a continuous cable structure of fixed length. Single and/or trains of action potentials
along with spatially distributed synaptic inputs drive the depolarisation and activate sparsely distributed
voltage-dependent calcium channels leading to calcium influx and diffusion in the cable. Here, time-
dependent analytical solutions were obtained through the application of a perturbation expansion of
the non-dimensional voltage (Φ) and non-dimensional calcium (ΦCa) and then solving the resulting set
of integral equations. We use this framework to gain insights to calcium-driven synaptic plasticity in
dendrites. Previous studies have traditionally focused on the local impact of calcium on whether the strength
of the synapse is increased (potentiated) or decreased (depressed). Only recently, studies focusing on
heterosynaptic plasticity have been gaining popularity and here we ask the question of how a local plasticity
rule is influenced by the spatially and temporally distributed synaptic inputs. Specifically, we focus on how
the resulting spike-timing-dependent plasticity (STDP) window is influenced by synaptic inputs and calcium
influx at nearby sites to assess the nature of the resulting distance-dependent heterosynaptic interaction on
STDP at the synapse of interest.

Keywords: Ion channels, Spike trains, Sparsely excitable dendrites, Integrative modelling, Ionic cable equation,
Green’s functions, calcium-based synaptic plasticity, Spike timing-dependent plasticity (STDP).
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1. Introduction

Many papers, both experimental and theoretical
have focused on how interconnected populations
of neurons adapt their connectivity and functional
properties, in response to neural activity caused
by some external stimulus. At the cellular level,
experimental observation of this activity drives
changes in both the pattern of connectivity
and the strength of synapses between neurons.
High-frequency activity or pairing low-frequency
stimulation with depolarisation at the postsynaptic
site has typically demonstrated the strengthening
of the synaptic weight, an effect commonly
known as Long-Term Potentiation (LTP) (Bliss

& Lomo, 1973; Dudek & Bear, 1992 1993;
Levy & Steward, 1979; Stent, 1973) while
low-frequency stimulation alone leads to the
weakening of the synapse called Long-Term
Depression (LTD) (Abraham & Goddard, 1983;
Barrionuevo et al., 1980; Fujii et al., 1991;
Levy & Steward, 1979; Staubli & Lynch, 1990).
These studies have also illustrated the additional
properties of associativity and cooperativity
between synapses involved in the induction of
LTP or LTD. Moreover, such studies have shown
distinct types of LTP and LTD are expressed
in different cellular domains (Frey & Morris,
1997; Malenka et al., 1989; Mulkey et al., 1993).
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Nevertheless, experiments have additionally
illustrated that the property of temporal specificity
also contributes to the direction of synaptic change.
This spike-timing-dependent plasticity illustrated
that the temporal order and precise timing of
presynaptic and postsynaptic activities govern
the change in synaptic strength, whose functional
profile is described by an asymmetric temporal
window where synaptic potentiation occurs when
presynaptic activity precedes postsynaptic spike
generation; and synaptic weakening occurs when
the temporal order of such events is reversed (Bi
& Poo, 1998; Debanne et al., 1994 1998 1995;
Markram et al., 1997; Zhang et al., 1998).

For over three decades studies have demonstrated
that the type of stimulation is not the only factor
that is involved neural learning, but there are
contributions from intracellular processes; the
most notable being the role and contribution
of calcium and other molecules (De Schutter
& Smolen, 1998; Frey & Morris, 1997 1998;
Kelleher et al., 2004; Reymann & Frey, 2007;
Sajikumar & Frey, 2004ab; Sajikumar et al.,
2007 2004; Smolen, 2007). Recent studies have
increasingly turned their attention to understanding
the molecular processes of how synapses change,
both structurally and functionally, and thus
require a comprehensive understanding of the
underlying molecular signalling network and
the corresponding interactions between various
molecules, which remains elusive. Nonetheless,
numerous experiments have underscored the
pivotal role of fluctuations in cellular calcium
levels in facilitating plastic changes in synapses.
We that the nonlinear voltage dependency of
the N-Methyl-D-Aspartate (NMDA) receptor
dictates that modest activation induces Long-Term
Depression (LTD), whereas robust activation
triggers Long-Term Potentiation (LTP) (Dudek &
Bear, 1992 1993; Kirkwood et al., 1996; Malenka
et al., 1988). Moreover, the initiation of either LTD
or LTP consistently corresponds to subsequent
alterations in intracellular calcium levels within
the synapse, typically through calcium influx via
NMDA receptor activation. Nevertheless, NMDA
receptor activation represents just one avenue
through which calcium influx into the synapse can
occur; activation of high-voltage-activated L-type
and low-voltage-activated T-type calcium channels
or calcium release from internal stores, such as the

endoplasmic recticulum (ER) can also precipitate
altering in intracellular calcium levels.

One topic that has gained increasing attention is
the role and induction of heterosynaptic plasticity
within dendrites, where the induction of synaptic
plasticity caused by pre-synaptic and post-synaptic
activity at one position causes plasticity changes
at different nearby locations (Chater & Goda,
2021; Chistiakova & Volgushev, 2009; Moldwin
et al., 2023; Pozo & Goda, 2010; Tong et al.,
2021). This points to the question that deserves
further investigation of the role that the spatial
spread of internal calcium has on the plasticity of
synapses and specifically, the interplay between
neuronal morphology on the spread of activity
within dendrites and how this affects calcium
concentration and the expression of synaptic
plasticity. One related example is the distance-
dependent broadening of the LTD component
of the STDP learning window along the apical
dendrite of a layer 2/3 pyramidal cell presented
by (Froemke et al., 2005) and this heterogeneity
points to location-dependent modifications
that affect local activity and plastic change of
synapse, a view supported by the existence of
a cooperative switch in the sign of plasticity in
distal dendrites of neocortical pyramidal cells
(Sjöström & Häusser, 2006). The multifacet
aspects towards understanding the heterosynaptic
nature of synaptic plasticity within dendrites
naturally lead one to ask about the contribution of
distance-dependent spatial interactions resulting
from spatially and temporally distributed inputs
and the corresponding calcium influx on the
associated learning window at the synaptic
location of interest.

In tandem with conducting experiments, the
cultivation of theoretical frameworks can enhance
comprehension regarding the mechanisms and
consequences of different types of plasticity,
and the central role of calcium (and other
important macromolecules). These theoretical
tools facilitate the formulation of predictions and
valuable insights into the dynamic interaction
between activity and cellular calcium levels,
during synaptic plasticity induction. To meet
such a challenge, ionic cable theory has been
developed which takes into account the physically
discrete distribution and voltage-dependent
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nature of ion channels throughout the neuron’s
membrane and permits analytical solutions to
be obtained (Poznanski, 2001 2004; Poznanski
& Bell, 2000ab). Significantly, this framework
has been extended to include the reaction and
diffusion of calcium in dendritic cables and
was shown to reproduce the distance-dependent
broadening of the LTD portion of the STDP
learning window (Iannella & Tanaka, 2006 2007;
Iannella et al., 2014), highlighting the importance
to consider the influence of neuronal morphology
on plasticity outcomes.

In this paper, we investigate one of many
aspects associated with heterosynaptic plasticity,
namely the impact of how spatial interactions
between synaptic inputs influence the level
of intracellular calcium and the expression of
plasticity. Significantly, our study predicts that
the nature of synaptic summation introduces a
distance-dependent spatiotemporal influence on
the expression of plasticity. We illustrate this
effect through a simple simulation paradigm that
can be easily adopted in experiments where we
supplement the STDP protocol with an additional
short train of input spikes at various spatial
locations close to the site of interest and whose
timing is delayed concerning this site, thus
providing a picture of the nontrivial nature of
heterosynaptic interactions and their associated
spatiotemporal effects.

2. Methods

We use Shouval’s widely accepted calcium-
dependent plasticity (CaDP) model (Shouval et al.,
2002) to investigate the distance-dependence and
temporal influence that short trains of input spikes
have on the expression of calcium-dependent
synaptic plasticity at a given site of interest to help
uncover associated spatiotemporal effects.

In the original model proposed by Shouval et al.
(2002), plasticity occurs through a singular point
of association, hinging on the interplay between
glutamatergic NMDA receptor activation and
(strong) depolarisation of a dendrite’s postsynaptic
membrane. Here, NMDA serves as a coincidence
detector between pre- and postsynaptic activities.
The model explicitly incorporates the calcium
control hypothesis, positing that moderate
calcium levels above a baseline induce long-term

depression (LTD), whereas elevated calcium
levels prompt long-term potentiation (LTP).
Additionally, this study refrains from introducing
location-specific variations in the parameters of
the plasticity rule to prevent potential confounding
effects. Shouval’s original model for CaDP is
given by the following set of equations,

dW j

dt
= η

(
[Ca2+] j

) (
Ω

(
[Ca2+] j

)
−W j

)
,

Ω(x) = σ(x − a2, b2) − Aσ(x − a1, b1),

η(x) =
p2 + xp3

p1 + p4(p2 + xp3)
,

σ(x, a) =
eax

1 + eax , (1)

where W j denotes the strength of synapse j,
[Ca2+] j is the peak calcium concentration at

that synapse, η
([

Ca2+
]

j

)
is a calcium-dependent

learning rate, and Ω
([

Ca2+
]

j

)
determines the

sign of synaptic change as a function of calcium
concentration

[
Ca2+

]
j

in synapse j. The calcium

dependent functions Ω(x) and η(x) are illustrated
in Fig 1A and Fig 1B, respectively. The weight
change to a single presynaptic and postsynaptic
pairing is proportional to

∆W j ∝ η
(
[Ca2+] j

)
Ω

(
[Ca2+] j

)
. (2)

We start by considering a section of dendrite
described by our ionic cable framework, as
a continuous cable where voltage is denoted
by V(x, t) (mV) and calcium concentration by
[Ca](x, t) (µM), endowed with various voltage-
dependent ion channels and calcium dynamics.
Our set of ion channels is described using
the Hodgkin-Huxley formalism, comprising
of sodium, the delayed rectifier and transient
potassium, Low voltage-activated (LVA) and
high voltage-activated (HVA) calcium channels
distributed along the cable at discrete locations
forming hotspots that contain clusters of channels
acting as point current sources. Furthermore, we
also consider hotspots of α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA),
gamma-aminobutyric acid (GABA), and N-
methyl-d-aspartate (NMDA) receptors, that
represent the post-synaptic side of our synapse(s).
Our model is mathematically described by the
following system of reaction-diffusion equations
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Figure 1: (A): The calcium-dependent function
Ω([Ca2+] j) implements the calcium control
hypothesis, when [Ca2+] < θd no change in the
synaptic weight occurs, for θd < [Ca2+] < θp
synaptic depression (LTD) occurs, and for
[Ca2+] > θp synaptic weights are increased (LTP)
(parameters used were A = 0.25, a1 = 0.45,
a2 = 30, a3 = 0.65, a4 = 30. B: Calcium
dependent learning rate η (adapted from Shouval
et al. (2002)). Parameters were p1 = 0.25,
p2 = 1/10000, p3 = 2.1, p4 = 1.

given by,

Cm
∂V
∂t
=

d
4ρi

∂2V
∂x2 + gℓ(Vℓ − V)

+

k∑
µ=1

Nµ∑
i=1

Iµion(x, t; V; Ca)δ(x − xµi )

+

NAMPA∑
i=1

IAMPA(x, t; V)δ(x − xAMPA
i )

+

NNMDA∑
i=1

INMDA(x, t; V; Ca)δ(x − xNMDA
i )

+

NGABA∑
i=1

IGABA(x, t; V)δ(x − xGABA
i ) + IA(x, t)

∂[Ca]i

∂t
= DCa

∂2[Ca]i

∂x2 + bM [M] − fM[Ca]iB
T
M

+ fM[Ca]i [M] −
4Pm

d
Kp

[Ca]i

[Ca]i + Kp

+

s∑
ν=1

Nν∑
i=1

2IνCa(x, t; V; Ca)

F d
δ(x − xνi )

+

NNMDA∑
i=1

2INMDA
Ca (x, t; V; Ca)

F d
δ(x − xNMDA

i )

∂ [M]
∂t
= DM

∂2 [M]
∂x2 − bM [M]

+ fM[Ca]iB
T
M − fM[Ca]i [M] , (3)

where Cm is the membrane capacitance per unit
area (F/cm2), d is the diameter of the finite cable
under consideration, ρi is the internal cytoplasmic
resistivity (Ωcm), gℓ is the leak conductance with
units (S/cm2) and Vℓ is the leak reversal potential
(mV). Iµion represents the ion current density
per unit length (mA/cm) (which can either be
voltage-dependent, calcium-dependent or both) for
a single type of channel, denoted by µ. IA(x, t) is
an applied current density per unit area (mA/cm2),
and δ is the Dirac delta function (cm−1), where Nµ
and xµi , are the numbers and positions of hotspots
for each channel µ, respectively.

In addition, [Ca]i and [M] are the respective
internal calcium and buffer concentrations in
(µM) at position x and time t and BT

M denotes
the total concentration of buffer BM, and
the diffusion coefficients for calcium and the
buffer are denoted by DCa and DM (in units
of (µm2/msec)), respectively. Calcium ions
are extruded from the cable via a high-affinity
calcium pump where Pm is the membrane pump
parameter (µm/msec), Kp (µM) represents the
pump dissociation constant and the factor 4/d is
the surface area-to-volume ratio for a cylinder of
diameter d. Calcium entry into the cable is carried
by two sources; the first is the calcium current
I
ν
Ca(x, t; V; Ca) flowing through each specific

voltage and calcium-dependent calcium channel
ν and the second source is the calcium current
through the activation of the NMDA receptors
I

NMDA
Ca (x, t; V; Ca). The ratio 2/F d ensures that

the current density per unit length is converted into
a concentration gradient. F is Faraday’s constant
(C/mol). The summations over calcium channel
type ν and their corresponding hotspot locations
xνi represent the total calcium influx entering the
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cable through all calcium-permeable channels.

The calcium reaction-diffusion system
can be linearized using the rapid buffer
approximation (Iannella & Tanaka, 2006; Zador
& Koch, 1994) where in the presence of a fast
buffer and under the condition that the calcium
concentration is much lower than the pump
dissociation constant Kd (i.e., [Ca]i ≪ Kd). it has a
formal equivalence to the cable equation, allowing
the reaction-diffusion system to be reduced to
a single partial differential equation (PDE),
since assuming a much larger pump dissociation
constant than the calcium concentration, the pump
behaves linearly;

lim
[Ca]i≪Kd

4Pm

d
Kp

[Ca]i

[Ca]i + Kp
→

4Pm[Ca]i

d
.

and when the buffer reaches equilibrium much
faster than the diffusion of calcium, this permits
the application of the chain rule, leading to the
following expression between [Ca]i and [M]:

∂ [M]
∂t
=
∂ [M]
∂[Ca]i

∂[Ca]i

∂t
=

B
T
MKd

([Ca]i + Kp)2
∂[Ca]i

∂t
.

This allows the calcium reaction-diffusion system
for calcium to be reduced to a single equation,
namely

d(1 + β)
4Pm

∂[Ca]i

∂t
=

d(DCa + βDM)
4Pm

∂2[Ca]i

∂x2

− [Ca]i +

s∑
ν=1

Nν∑
i=1

I
ν
Ca(x, t; V)

2F Pm
δ(x − xνi ),

+

NNMDA∑
i=1

I
NMDA
Ca (x, t; V; Ca)

2F Pm
δ(x − xNMDA

i )

where β = B
T
M/Kd. This approximation to

calcium dynamics allows the system of reaction-
diffusion equations can be reduced to the following
set of equations, mathematically described by the
following system of reaction-diffusion equations
given by,

Cm
∂V
∂t
=

d
4ρi

∂2V
∂x2 + gℓ(Vℓ − V)

+

k∑
µ=1

Nµ∑
i=1

Iµion(x, t; V; Ca)δ(x − xµi )

+

NAMPA∑
i=1

IAMPA(x, t; V)δ(x − xAMPA
i )

+

NNMDA∑
i=1

INMDA(x, t; V; Ca)δ(x − xNMDA
i )

+

NGABA∑
i=1

IGABA(x, t; V)δ(x − xGABA
i ) + IA(x, t)

(4)

τCa
∂[Ca]i

∂t
= λ2

Ca
∂2[Ca]i

∂x2 − [Ca]i

+

s∑
ν=1

Nν∑
i=1

I
ν
Ca(x, t; V)

2F Pm
δ(x − xνi ),

+

NNMDA∑
i=1

I
NMDA
Ca (x, t; V; Ca)

2F Pm
δ(x − xNMDA

i ),

(5)

where we have defined τCa = d(1 + β)/(4Pm),
λCa =

√
d(DCa + βDM)/4Pm and β = BT

M/Kp.

By rewriting Eqns. (4) and (5) in terms
of dimensionless variables by introducing the
membrane resistivity Rm = 1/gℓ (Ωcm2), the
dimensionless membrane potential Φ(x, t) =
V(x, t)/Upeak (Upeak is a voltage reference value
typically taken to be the peak value of the
membrane potential, namely the maximal value of
an action potential), a dimensionless concentration
ΦCa = [Ca]i/[Ca]re f where [Ca]re f is some pre-
specified non-zero reference concentration. The
dimensionless space and time variables are X =
x/λ and T = t/τm, respectively, where the
space constant is given by λ =

√
Rmd/4ρi

(cm) and τm = RmCm (msec) is the membrane
time constant. For the calcium component, Eqn.
(4) is transformed through the introduction of the
dimensionless space and time variables are defined
as XCa = x/λCa and TCa = t/τCa, where λCa and
τCa are the corresponding space and time constants
for calcium, one can rewrite the above system of
Eqns. (4) and (5) into the following dimensionless
system of cable equations,

∂Φ
∂T
=
∂2Φ

∂X2 −Φ

+
Rm

λ

k∑
µ=1

Nµ∑
i=1

Iµion(X,T;Φ;ΦCa)δ(X − Xµi )
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+
Rm

λ

NAMPA∑
i=1

IAMPA(X,T;Φ)δ(X − XAMPA
i )

+
Rm

λ

NNMDA∑
i=1

INMDA(X,T;Φ;ΦCa)δ(X − XNMDA
i )

+
Rm

λ

NGABA∑
i=1

IGABA(X,T;Φ)δ(X − XGABA
i )

+
IA(X,T)

Upeak
(6)

and

∂ΦCa,ΦCa

∂TCa
=
∂2ΦCa

∂X2
Ca

−ΦCa

+N1

s∑
ν=1

Nν∑
i=1

I
ν
Ca(XCa, t;Φ;ΦCa)δ(Xca − XνCa,i)

+N1

NNMDA∑
i=1

I
ν
Ca(XCa, t;Φ;ΦCa)δ(Xca − XNMDA

Ca,i ),

(7)

where we have used the following property of
the Dirac delta function, δ(ΛX) = δ(X)/Λ.
The second equation is the chemical analogue
of the cable equation, where the constant
N1 = Upeak/(2λCaF Pm[Ca]re f ), noting that
the normalization of calcium by some peak
concentration is not possible since the peak
concentration is not known a priori. A reasonable
choice for [Ca]re f could be the external calcium
concentration at rest, i.e., [Ca]re f = [Ca]0 = 2mM,
the applied current is IA = RmIA, Xµi = xµi /λ
and XµCa,i = xµi /λCa denotes the corresponding
location of the ith hotspot for channel µ in the cable
and chemical cable, respectively. One should note
that although the electrotonic location of hotspots
occurring in the dimensionless cable and those
(chemicotonic locations) in the dimensionless
chemical counterpart differ, they each represent the
same physical location x in the continuous cable.
Here, we assume a finite cable of length L = ℓ/λ
and constant diameter where the initial conditions
of the entire system are at rest. The summation
appearing in Eqn. (6) represents the sum over all
voltage-dependent ionic current sources (noting
that some channels can also be calcium-dependent)
and is given by

k∑
µ=1

Nµ∑
i=1

Iµion(X,T;Φ; ,ΦCa)δ(X − Xµi ) =

NNa∑
i=1

INa(X,T;Φ)δ(X − XNa
i )

+

NK∑
j=1

IK(X,T;Φ)δ(X − XK
j )

+

NK(A)∑
l=1

IK(A)(X,T;Φ)δ(X − XK(A)
l )

+

NCa(T)∑
m=1

ICa(T)(X,T;Φ;ΦCa)δ(X − XCa(T)
m )

+

NCa(HVA)∑
p=1

ICa(HVA)(X,T;Φ;ΦCa)δ(X − XCa(HVA)
p ),

while the corresponding term in Eqn. (6) indicates
the sum over all voltage gated calcium channels.

s∑
ν=1

Nν∑
i=1

IνCa(XCa,TCa;Φ)δ(XCa − XνCa,i) =

NCa(T)∑
m=1

ICa(T)(XCa,TCa;Φ;ΦCa)δ(XCa − XCa(T)
Ca,m )

+

NCa(HVA)∑
p=1

ICa(HVA)(XCa,TCa;Φ;ΦCa)

× δ(XCa − XCa(HVA)
Ca,p ),

where each ionic current is given by the following
general form,

Iµion(Xi,T;Φ,ΦCa) = εgµ∗Nµ∗(Xi) (mµ[Φi])
p

× (hµ[Φi])
q
F
µ(Φi,Φ

Ca
i ),

where µ denotes the type of ion channel, Xi = Xµi
corresponds to the electrotonic position of the ith

hotspot of channel µ, ε << 1 is a factor scaling the
“whole-cell” macroscopic transmembrane current
density into spatially discrete ion channel clusters,
the single channel conductance id denoted by
gµ∗ , Nµ∗(Xi) = θµ(Xi)/πd has units of (cm)−1

and represents the number of channels per unit
length, θµ(Xi) denotes the number of channels
in the ith hotspot of channel µ, mµ(Φ) and hµ(Φ)
are the activation and inactivation variables of
channel µ, respectively, p and q are exponents,
and F µ(Φi,ΦCa

i ) represents the voltage and/or
calcium current dependence of channel µ, and
Φµ = Vµ/Upeak is the dimensionless equilibrium
potential where Vµ is the usual equilibrium
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potential (mV) of channel µ.

One can now transform our general system of
cable equations into a system of nonlinear integral
equations using the same techniques as described
by (Iannella & Tanaka, 2006 2007),

Φ(X,T) = Ψ(X,T)

+ΨAMPA(X,T) +ΨGABA(X,T) +ΨNMDA(X,T)

+ ε
Rm

λ

∫ T

0

k∑
µ=1

Nµ∑
i=1

f µ
[
Φi(s),ΦCa

i (s)
]

× G(X,Xµi ; T − s)ds, (8)

ΦCa(XCa,TCa) =

ΨCa(XCa,TCa) +ΨNMDA
Ca (XCa,TCa)

+ εℵ1

∫ TCa

0

NCa(T)∑
i=1

FCa(T)
[
Φi(s),ΦCa

i (s)
]

× G
(
XCa,XCa,i; TCa − s

)
ds

+ εℵ1

∫ TCa

0

NCa(HVA)∑
i=1

FCa(HVA)
[
Φi(s),ΦCa

i (s)
]

× G
(
XCa,XCa,i; TCa − s

)
ds, (9)

where

Ψ(X,T) =
∫ T

0

∫ L

0

IA(Y, s)
Upeak

G(X,Y; T − s)dYds

ΨAMPA(X,T) =

ε
Rm

λ

∫ T

0

NAMPA∑
i=1

f AMPA[Φi(s)]

× G(X,XAMPA
i ; T − s)ds

ΨGABA(X,T) =

ε
Rm

λ

∫ T

0

NGABA∑
i=1

f GABA[Φi(s)]

× G(X,XGABA
i ; T − s)ds

ΨNMDA(X,T) =

ε
Rm

λ

∫ T

0

NNMDA∑
i=1

f NMDA[Φi(s)]

× G(X,XNMDA
i ; T − s)ds

ΨCa(XCa,TCa) =∫ L

0
G(XCa,YCa; TCa)ΦCa(YCa, 0) dYCa

ΨNMDA
Ca (XCa,TCa) =

εN1

∫ TCa

0

NNMDA∑
i=1

f NMDA
Ca

[
Φi(s),ΦCa

i (s)
]

× G
(
XCa,XCa,i; TCa − s

)
ds

ℵ1 =
Upeak

2λCaF Pm[Ca]re f
.

Solutions can then be derived by performing
a perturbative expansion for Φ(X,T) and
ΦCa(XCa,TCa), respectively.

Φ(X,T) = Φ0(X,T) + εΦ1(X,T) + ε2Φ2(X,T)

+ ε3Φ3(X,T) +O(ε4)

ΦCa(XCa,TCa) = ΦCa
0 (XCa,TCa) + εΦCa

1 (XCa,TCa)

+ ε2ΦCa
2 (XCa,TCa) + ε3ΦCa

3 (XCa,TCa) +O(ε4).

After some algebra and collecting like terms in
powers of ε, we arrive at

Φ1(X,T) =
Rm

λ

k∑
µ=1

Nµ∑
i=1

∫ T

0
G(X,Xµi ; T − s)

× f µ
[
Φ0i(s),ΦCa

0i (s)
]

ds

+
Rm

λ

NAMPA∑
i=1

∫ T

0
G(X,XAMPA

i ; T − s)

× f AMPA[Φ0i(s)] ds

+
Rm

λ

NGABA∑
i=1

∫ T

0
G(X,XGABA

i ; T − s)

× f GABA[Φ0i(s)] ds

+
Rm

λ

NNMDA∑
i=1

∫ T

0
G(X,XNMDA

i ; T − s)

× f NMDA[Φ0i(s)] ds

Φ2(X,T) =
Rm

λ

k∑
µ=1

Nµ∑
i=1

∫ T

0
G(X,Xµi ; T − s)

×

{
∂ f µ

∂Φ

[
Φ0i(s),ΦCa

0i (s)
]
Φ1i(s)

+
∂ f µ

∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
ΦCa

1i (s)
}

ds
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+
Rm

λ

NAMPA∑
i=1

∫ T

0
G(X,XAMPA

i ; T − s)

×
∂ f AMPA

∂Φ
[Φ0i(s)]Φ1i(s)ds

+
Rm

λ

NGABA∑
i=1

∫ T

0
G(X,XGABA

i ; T − s)

×
∂ f GABA

∂Φ
[Φ0i(s)]Φ1i(s)ds

+
Rm

λ

NNMDA∑
i=1

∫ T

0
G(X,XNMDA

i ; T − s)

×
∂ f NMDA

∂Φ
[Φ0i(s)]Φ1i(s)ds

Φ3(X,T) =
Rm

λ

k∑
µ=1

Nµ∑
i=1

∫ T

0
G(X,Xµi ; T − s)

×

{
∂ f µ

∂Φ

[
Φ0i(s),ΦCa

0i (s)
]
Φ2i(s)

+
∂ f µ

∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
ΦCa

2i (s)

+
1
2
∂2 f µ

∂Φ2

[
Φ0i(s),ΦCa

0i (s)
]
Φ2

1i(s)

+
∂2 f µ

∂Φ∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
Φ1i(s)ΦCa

1i (s)

+
1
2
∂2 f µ

∂ΦCa∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]

×ΦCa
1i (s)ΦCa

1i (s)
}

+
Rm

λ

NAMPA∑
i=1

∫ T

0
G(X,XAMPA

i ; T − s)

×

{
∂ f AMPA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2
∂2 f AMPA

∂Φ2 [Φ0i(s)]Φ2
1i(s)

}
ds

+
Rm

λ

NGABA∑
i=1

∫ T

0
G(X,XGABA

i ; T − s)

×

{
∂ f GABA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2
∂2 f GABA

∂Φ2 [Φ0i(s)]Φ2
1i(s)

}
ds

+
Rm

λ

NNMDA∑
i=1

∫ T

0
G(X,XNMDA

i ; T − s)

×

{
∂ f NMDA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2
∂2 f NMDA

∂Φ2 [Φ0i(s)]Φ2
1i(s)

}
ds

(10)

and

ΦCa
1 (XCa,TCa) =

ℵ1

NCa(HVA)∑
i=1

∫ TCa

0
G(XCa,XCa,i; TCa − s)

× FCa(HVA)
[
Φ0i(s),ΦCa

0i (s)
]

ds

+ ℵ1

NAMPA∑
i=1

∫ T

0
G(XCa,XAMPA

i ; TCa − s)

× f AMPA[Φ0i(s)] ds

+ ℵ1

NGABA∑
i=1

∫ T

0
G(XCa,XGABA

i ; TCa − s)

× f GABA[Φ0i(s)] ds

+ ℵ1

NNMDA∑
i=1

∫ T

0
G(XCa,i,XNMDA; TCa − s)

× f NMDA[Φ0i(s)] ds

ΦCa
2 (XCa,TCa) =

ℵ1

NCa(HVA)∑
i=1

∫ TCa

0
G(XCa,XCa,i; TCa − s)

×

{
∂FCa(HVA)

∂Φ

[
Φ0i(s),ΦCa

0i (s)
]
Φ1i(s)

+
∂FCa(HVA)

∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
ΦCa

1i (s)
}

ds

+ ℵ1

NAMPA∑
i=1

∫ T

0
G(XCa,XAMPA

Ca,i ; TCa − s)

×
∂ f AMPA

∂Φ
[Φ0i(s)]Φ1i(s)ds

+ ℵ1

NGABA∑
i=1

∫ T

0
G(XCa,XGABA

Ca,i ; TCa − s)

×
∂ f GABA

∂Φ
[Φ0i(s)]Φ1i(s)ds

+ ℵ1

NNMDA∑
i=1

∫ T

0
G(XCa,XNMDA

Ca,i ; TCa − s)

×
∂ f NMDA

∂Φ
[Φ0i(s)]Φ1i(s)ds
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ΦCa
3 (XCa,TCa) =

ℵ1

NCa(HVA)∑
i=1

∫ TCa

0
G(XCa,XCa,i; TCa − s)

×

{
∂FCa(HVA)

∂Φ

[
Φ0i(s),ΦCa

0i (s)
]
Φ2i(s)

+
∂FCa(HVA)

∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
ΦCa

2i (s)

+
1
2
∂2FCa(HVA)

∂Φ2

[
Φ0i(s),ΦCa

0i (s)
]
Φ1i(s)Φ1i(s)

+
∂2FCa(HVA)

∂Φ∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
Φ1i(s)ΦCa

1i (s)

+
1
2
∂2FCa(HVA)

∂ΦCa∂ΦCa

[
Φ0i(s),ΦCa

0i (s)
]
ΦCa

1i (s)ΦCa
1i (s)

}
ds

+ ℵ1

NAMPA∑
i=1

∫ T

0
G(XCa,XAMPA

Ca,i ; TCa − s)

×

{
∂ f AMPA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2
∂2 f AMPA

∂Φ2 Φ2
1i(s)

}

+ ℵ1

NGABA∑
i=1

∫ T

0
G(XCa,XGABA

Ca,i ; TCa − s)

×

{
∂ f GABA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2
∂2 f GABA

∂Φ2 Φ2
1i(s)

}
ds

+ ℵ1

NNMDA∑
i=1

∫ T

0
G(XCa,XNMDA

Ca,i ; TCa − s)

×

{
∂ f NMDA

∂Φ
Φ2i(s)

+
1
2
∂2 f NMDA

∂Φ2 Φ2
1i(s)

}
ds, (11)

where Xi = Xµi represents the electrotonic position
of the ith µ channel hotspot and XCa,i denotes
the chemicotonic position of the ith HVA calcium
channel hotspot.

The expressions Eqns (8-11) present the
perturbative solutions for the general case
when the voltage and calcium systems are
coupled via their dependence through the current
dependence of channel µ, namely F µ(Φi,ΦCa

i ).
These expressions are needed when the current

dependence of the high-voltage activated L-
type and low-voltage activated T-type calcium
channels are dependent on calcium and voltage
and any functional dependence from input currents
generated through AMPA, GABA, and NMDA
receptors by synaptic inputs.

For the illustrative purposes of this study, we will
consider the case where there is only voltage (no
explicit calcium) dependence in the mathematical
representation of each respective ion channel.
Similar to many previous studies, ionic currents are
expressed as,

Iµion(Xi,T;Φ) = εgµ∗Nµ∗(Xi) (mµ[Φi])
p

× (hµ[Φi])
q (Φµ −Φ).

When presynaptic stimulation occurs at time T j,
this can generate a current through any present
AMPA receptor hotspots

IAMPA(XAMPA
i ,T;Φ) = εgAMPA

N
AMPA(XAMPA

i )
× gAMPA(T − T j)H(T − T j)(Φrev

AMPA −Φ).

Similarly, GABAergic inputs generate
hyperpolarizing or inhibitory input currents
through their corresponding receptor hotspots
given by,

IGABA(XGABA
i ,T;Φ) = εgGABA

N
GABA(XGABA

i )
× gGABA(T − T j)H(T − T j)(Φrev

GABA −Φ),

while the NMDA receptor-generated current and
the corresponding calcium current through this
receptor is given by

INMDA(XNMDA
i ,T;Φ) =

εgNMDA
N

NMDA(XNMDA
i )gNMDA(T − T j)

×H(T − T j)B(Φ)(Φrev
NMDA −Φ)

INMDA
Ca (XCa,TCa;Φ) = εgNMDA

N
NMDA(XCa,i)

× gNMDA(TCa − TCa, j)H(TCa − TCa, j)
× B(Φ)(Φrev

Ca −Φ),

where Xµi , XAMPA
i , XGABA

i , and XNMDA
i

represents the electrotonic positions of the ith

µ channel, AMPA, GABA, and NMDA receptor
hotspots, respectively. Similarly, XνCa,i and
XNMDA

Ca,i denotes the corresponding chemicotonic
positions of calcium currents generated by
the ith ν-type calcium channel and NMDA
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receptor hotspots, respectively. Here, the single
channel conductance for AMPA is denoted by
gAMPA, NAMPA(XAMPA

i ) = θAMPA(XAMPA
i )/πd

corresponds to the number of AMPA receptors
per unit length (cm−1), θAMPA represents
the number of AMPA receptors in the ith

AMPA receptor hotspot, gAMPA(T) is the
corresponding conductance change of the
AMPA receptor. Likewise, the single channel
conductance for GABA is gGABA, where
N

GABA(XGABA
i ) = θGABAA(XGABA

i )/πd is the
number of GABA receptors per unit length (cm−1),
θGABA represents the number of GABA receptors
in the ith GABA receptor hotspot, gGABA(T) is the
corresponding conductance change of the GABA
receptor. Similarly, for NMDA, we have gNMDA,
N

NMDA(XNMDA
i ) = θNMDA(XNMDA

i )/πd
corresponds to the number of NMDA receptors per
unit length (cm−1), θNMDA represents the number
of NMDA receptors in the ith NMDA receptor
hotspot, gNMDA(T) is the conductance change
associated with the NMDA receptor, H(T) denotes
the Heaviside step function, Φrev

NMDA and Φrev
Ca are

the reversal potentials for NMDA and calcium,
respectively, and finally the magnesium block
is represented by a nonlinear voltage dependent
function B(Φ) given by (Jahr & Stevens, 1990),

B(Φ) =
1

1 + exp(−0.062UpeakΦ)[Mg2+]0/3.57
,

where [Mg2+]0 is the extracellular magnesium
concentration.

These choices lead to a system of cable equations
where voltage and calcium are uncoupled, and
by following the method described in (Iannella
& Tanaka, 2007), and applying a perturbative
expansion for only Φ(X,T) (after recasting
Eqns. (8) and (9) into the corresponding system of
nonlinear Volterra integral equations) one arrives at
the following,

Φ1(X,T) =
Rm

λ

k∑
µ=1

Nµ∑
i=1

∫ T

0
G(X,Xµi ; T − s)

× f µ[Φ0i(s)] ds

+
Rm

λ

NAMPA∑
i=1

∫ T

0
G(X,XAMPA

i ; T − s)

× f AMPA[Φ0i(s)] ds

+
Rm

λ

NNMDA∑
i=1

∫ T

0
G(X,XNMDA

i ; T − s)

× f NMDA[Φ0i(s)] ds

Φ2(X,T) =
Rm

λ

k∑
µ=1

Nµ∑
i=1

∫ T

0
G(X,Xµi ; T − s)

×
∂ f µ

∂Φ
[Φ0i(s)]Φ1i(s)ds,

+
Rm

λ

NAMPA∑
i=1

∫ T

0
G(X,XAMPA

i ; T − s)

×
∂ f AMPA

∂Φ
[Φ0i(s)]Φ1i(s)ds,

+
Rm

λ

NNMDA∑
i=1

∫ T

0
G(X,XNMDA

i ; T − s)

×
∂ f NMDA

∂Φ
[Φ0i(s)]Φ1i(s)ds

Φ3(X,T) =

Rm

λ

k∑
µ=1

Nµ∑
i=1

∫ T

0
G(X,Xµi ; T − s)

×

{
∂ f µ

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2!
∂2 f µ

∂Φ2 [Φ0i(s)]Φ2
1i(s)

}
ds,

+
Rm

λ

NAMPA∑
i=1

∫ T

0
G(X,XAMPA

i ; T − s)

×

{
∂ f AMPA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2!
∂2 f AMPA

∂Φ2 [Φ0i(s)]Φ2
1i(s)

}
ds

+
Rm

λ

NNMDA∑
i=1

∫ T

0
G(X,XNMDA

i ; T − s)

×

{
∂ f NMDA

∂Φ
[Φ0i(s)]Φ2i(s)

+
1
2!
∂2 f NMDA

∂Φ2 [Φ0i(s)]Φ2
1i(s)

}
ds

(12)

and

ΦCa (XCa,TCa) =
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∫ LCa

0
GCa(XCa,YCa; TCa)ΦCa(YCa, 0) dYCa

+ ℵ1

s∑
ν=1

Nν∑
i=1

∫ TCa

0
GCa

(
XCa,XνCa,i; TCa − s

)
× I

ν
Ca

(
XνCa,i, s

)
ds

+ ℵ1

NNMDA∑
i=1

∫ TCa

0
GCa

(
XCa,XNMDA

Ca,i ; TCa − s
)

× I
NMDA
Ca

(
XNMDA

Ca,i , s
)

ds. (13)

The integral expressions represent convolutions
between the Green’s function and various
functional forms involving zero, first, and higher-
order terms of the ionic current and voltage
contributions calculated via a regular perturbation
expansion.

For the specific case of our voltage-based cable
equation, we employ a nonhomogeneous Dirichlet
boundary condition at X = 0, which implements
a nonlinear current clamp with the shape of an
action potential, i.e. Φ(0, t) = f (t). While for
impulsive inputs occurring along the cable, we
assume that the current clamp at X = 0 is set
to zero, the corresponding boundary condition
for these inputs is equivalent to the killed end
condition Φ(0, t) = 0. At the other end of the
cable at X = L, the sealed-end boundary condition
is adopted. Analogously for the calcium-based
cable equation, we employ sealed-end boundary
conditions at XCa = 0 (X = 0) and XCa = LCa
(X = L) since there is no calcium flowing out of
each end.

Action potentials from hippocampal and
somatosensory pyramidal cells (Larkum et al.,
2001; Magee & Johnston, 1997) typically possess
an after-depolarising tail and have been shown to
participate in synaptic plasticity due to increased
calcium influx through NMDA receptors and
voltage-gated calcium channels (VGCC) (Isomura
& Kato, 1999; Isomura et al., 2002; Kampa et al.,
2006; Magee & Johnston, 1997; Metz et al., 2005).
These action potentials are modelled as,

IA(0,T) = U0

(
10e−2T sin ((2π/150)T)

+ 67e−30T
− 70e−60T + 3e−0.625T

)
H(T).

NMDA-derived calcium currents occur from the
coincidence between the presynaptic activation

of a postsynaptic NMDA receptor hotspot and
action potential propagation into a dendritic
section. Membrane depolarisation along the
dendritic section is used to calculate the resulting
calcium profiles. These calcium profiles can then
be used to evaluate the change in synaptic weight,
where the parameters used in the following sets of
simulations were A = 0.35, p1 = 1, p2 = 1.65,
p3 = 3, p4 = 0, a1 = 0.15, b1 = 30, a2 = 0.45, and
b2 = 30 unless stated otherwise.

3. Results

3.1. Spatial dependence of STDP

A landmark experiment illustrated that the STDP
learning window is not homogeneous but varies as
a function of distance along the length of dendrite
where one observes an elongation and increase
in the decay time constant of the LTD portion
of this window was observed (Froemke et al.,
2005). A previous modelling study reproduced
this effect using calcium-based plasticity (Iannella
et al., 2014) illustrating that the properties and
spatial distribution of ion channels influence the
profile of the STDP window as a function of
location. Here, we demonstrate that our model
also exhibits similar changes to the STDP window
as a function of distance along the portion of the
dendrite as can be observed in Fig 2.

Other factors can influence the profile of the
resulting STDP window. Studies have illustrated
that neuronal morphology can also impact firing
properties of neurons (Iannella et al., 2004; Mainen
& Sejnowski, 1996; Rall, 1964; Tuckwell, 1988a),
leading to diverse spatial and temporal calcium
profiles along dendrites and this in turn changes
calcium-dependent plasticity outcomes. Other
factors, like neural excitability, also contribute
to these outcomes since changes will impact
the amount and location of calcium influx,
contributing to whether potentiation or depression
occurs. Here, varying the density of calcium ion
channels, such as high voltage-activated (L-type)
and low voltage-activated (T-type) channels, can
lead to changes in calcium profiles and impact the
resulting STDP window at that location (Iannella
et al., 2014).
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3.2. Heterosynaptic influence: How spatial
interactions between synaptic inputs can alter
plasticity at the induction site

Another aspect that is not often discussed, but
is gaining increasing interest is the impact of
heterosynaptic influences on plasticity outcomes.
Typically, heterosynaptic plasticity focuses on
how the induction of synaptic plasticity at some
dendritic location may change the synaptic efficacy
at nearby synapses that are not active during the
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Figure 2: Resulting STDP learning windows taken
from two positions (A) x = 50 µm and (B) x =
200 µm along the cable, respectively. One can
observe an increase in the time constant of the LTD
portion of the STDP as a function of distance and
mimics the location-dependent nature of the STDP
window demonstrated from experiment (Froemke
et al., 2005). Parameters used for our calcium-basd
plasticity model were A = 0.35, p1 = 1, p2 = 1.65,
p3 = 3, p4 = 0, a1 = 0.15, b1 = 30, a2 = 0.45, and
b2 = 30.

induction (Chistiakova & Volgushev, 2009). This,
however, presents one side to the idea behind
heterosynaptic influences; significantly, there is
another aspect that (we believe) has not been
extensively discussed or considered, and that
is how other (non-plasticity) inducing synaptic
inputs to other locations influence the induction
and expression of synaptic plasticity at the site
of interest. At first glance, this seems to be the
opposite of heterosynaptic plasticity or could
even be interpreted as a form of homosynaptic
plasticity, here we argue that these two seemingly
different situations embrace what we define as
heterosynaptic influence/interaction, namely how
inputs at one or various locations influence the
plasticity outcome at the location of interest.
Note that this definition captures the notion of
both heterosynaptic plasticity and the visa-versa
situation of how non-plastic-inducing synaptic
inputs impact the expression and outcome of
plasticity at the induction site.

To investigate how non-plastic-inducing synaptic
inputs impact plasticity, simulations were
conducted using the STDP pairing paradigm
at a synapse that contains NMDA and an
additional short train of spike inputs that activate
AMPA receptors in a synaptic location close to the
synapse where STDP will be induced. The short
train consists of eleven spikes where the middle
spike is synchronised with the post-synaptic
spike (back-propagating action potential). The
frequency of spikes that comprise the short train
was 50 Hz. STDP was induced in a synapse
located 50 µm from the left boundary and contains
NMDA receptors. To find how the short train
of inputs impacts the synapse where STDP
induction takes place, the location of these inputs
is systematically varied by incremental steps of
1 µm with a starting position located at 40 µm,
10 µm before the site of the synapse undergoing
plastic change and a final position of 60 µm
(10 µm past the synapse). One should realise
that generally, the STDP window depends on
timing differences, the induction site XI, and
is implicitly influenced by the distance between
the induction site and inputs, denoted by X, then
the window can be considered to be a function
of three variables, XI is the location of STDP
induction, and T = ∆T = Tpost − tpre), denoted
as W(X; XI,T ). To characterise the influence
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Figure 3: Impact that the additional short train
of input spikes has on the STDP induction site at
x = 50 µm on the STDP window (A) and the
corresponding influence field ρ(x) (B). Parameters
used for our calcium-based plasticity model were
A = 0.35, p1 = 1, p2 = 1.65, p3 = 3, p4 = 0,
a1 = 0.15, b1 = 30, a2 = 0.45, and b2 = 30.

of short train inputs on the STDP induction site
XI, two measures applied to the resulting STDP
windows were adopted. The first and simplest
is an L1 difference measure, denoted by ∆W(X)
between the resulting STDP windows for the
case where the short train inputs were present
(denoted by WAMPA(X,XI,T )) or absent (denoted
by WO(XI,T )),

∆W(X) =
∫
T

∣∣∣∣WAMPA(X,XI,T ) −WO(XI,T )
∣∣∣∣dT .

The second measure is an adaptation of the
influence field originally described in Rathour &

Narayanan (2012), given by

ΛS(X) =

∣∣∣∣ωO(XI) − ωAMPA(X,XI)
∣∣∣∣

ωO(XI)
,

where

ωO(XI) =
∫
T

WO(XI,T )dT

and

ωAMPA(X,XI) =
∫
T

WAMPA(X,XI,T )dT .

Fig 3 provides an example of the heterosynaptic
influence that a short train of inputs has on the
resulting STDP window. Here, in Fig 3A we can
observe that the non-plasticity-inducing inputs
lead to clear changes to the STDP window when
compared to the case that is absent of these
additional inputs. This is due to the activation
of calcium-dependent ion channels allowing
additional calcium to enter and diffuse in the
dendrite and contribute to the expression of
the STDP window via calcium-based synaptic
plasticity. Note that change in the STDP window
profile (∆W(x)) driven by the short train of inputs
increases in size as a function of distance that
has a stronger effect at locations posterior to the
induction site at x = 50 µm, than before. This
seeminglessly counter-intuitive observation stems
from one’s initial expectation that inputs occurring
before the induction site would lead to greater
changes in the STDP window since these inputs
would be expected to contribute more calcium
measured at the induction site when compared to
inputs occurring after this location. Clearly this is
not the case, indicating that inputs occurring after
the induction site are contributing more calcium,
leading to bigger changes in the resulting STDP
window.

The situation is, however, more complicated and
strongly dependent on neural excitability, the
distribution of ion channels, and in particular,
voltage-gated calcium channels, spatial spread
of calcium, and any shunting effects originating
from the inputs themselves. These are the main
factors that contribute to this. The stronger
effect from short train inputs occurring after the
induction site is likely driven by a combination
of spatial diffusion processes for both voltage
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and calcium and the input’s proximity to a
calcium channel hotspot and its proximity to the
induction site, leading to more calcium influx
when compared to inputs occurring before this site.
This suggests that there are non-trivial and likely
nonlinear interactions between voltage, calcium
influx and diffusion, and calcium (and other) ion
channel distributions that have contributed to the
observation presented in Fig 3A. Fig 3B, illustrates
the corresponding influence field as a function of
distance from the STDP induction site (x = 50
µm). Observe the concave profile of ΛS(x) which
indicates that the additional inputs occurring after
the STDP induction site at x = 50 µm has a weaker
influence on the resulting STDP window than at
locations before x = 50 µm.

3.3. Heterosynaptic influence: Impact from
altering the number of HVA calcium channel
hotspots

In the previous section, we discussed several
factors that dictate the observed changes to the
STDP window in the presence of additional non-
plasticity-inducing inputs. Here, we illustrate that
increasing the number of HVA channel hotspots
can dramatically alter the L1 difference measure
∆W(x) and the influence field ΛS(x). Upon
comparing the results from the previous subsection
Fig 4A shows a similar trend to Fig 3A, but
influence field ΛS(x) presented in Fig 4B has
changed from a concave profile (presented in
Fig 3B) to a near linear relationship similar to
the L1 difference measure (absolute change) in
Fig 4A. This is a clear example of how changing
neural excitability, specifically altering the density
of calcium channels can alter the resulting STDP
window and the corresponding influence field.

3.4. Heterosynaptic influence depends on spatial
location

The heterosynaptic influence field ΛS(x) depends
not only on the neural excitability and ion channel
hotspot distributions but also on the location of
STDP induction along the dendrite. Fig 5A and
Fig 5B demonstrate the changes to the STDP
window and the influence field ΛS(x) at a greater
distance along the finite cable at x = 200 µm,
respectively. These profiles are different to
those presented in Fig 3A and Fig 3B for STDP
induction at x = 50 µm.

Here, the profiles of ∆W(x) and ΛS(x) align with
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Figure 4: Impact of increasing the number of HVA
L-type channel hotspots has on the STDP induction
site at x = 50 µm. (A) is the corresponding
L1 difference measure ∆W(x) and (B) is the
corresponding synaptic influence field ΛS(x).

the initial expectation, namely that synaptic inputs
occurring before the induction site have a greater
influence on the expression of the STDP window
than those that occur after this location. One can
observe an increase in ∆W(x) as the position of
short train inputs increases, indicating increasing
differences between the STDP window and the
case when no additional inputs are used, but the
influence field at x = 200 µm decreases as
distance increases suggesting that inputs occurring
before the induction site have a stronger influence
on the STDP window than inputs occurring
afterwards. This stems from inputs occurring
before x = 200 µm led to a greater influence
on the STDP window than those inputs occurring
after. This, however, one must not lose sight
of the nontrivial interplay between calcium influx
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Figure 5: Changing the location of STDP
induction to x = 200 µm leads to quantitative
changes to (A) is the L1 difference measure ∆W(x)
and (B) is the correspinding synaptic influence
field ΛS(x).

and diffusion, calcium accumulation, neuronal
excitability, the distribution of voltage-activated
calcium channels, and the underlying calcium-
dependent plasticity rule that generates the STDP
window. Furthermore, noting that the functional
form of ΛS(x) contains a component that can be
interpretted as the relative strength between the
STDP window with and without the additional
inputs, so as difference between STDP windows
increases, this leads to the ratio between the STDP
window with and without the additional inputs to
increase which leads to a decrease of influence field
ΛS(x).

3.5. Heterosynaptic influence also depends on the
timing of inputs

In the previous section, the timing of the central
input of the train was synchronised with the

postsynaptic event. This raises the question of
whether the timing onset of these inputs influences
has some effect on the resulting STDP window.
Fig 6 presents simulation outcomes that point to
a spatiotemporal relationship between the train
of inputs, their location relative to the STDP
induction site, and their onset timing.
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Figure 6: Changing the timing onset of the
additional train of inputs relative to the timing of
the post-synaptic event at the STDP induction site
at x = 50 µm leads to quantitative changes to (A)
and (B) the influence field ΛS(x) and (C) and (D)
the L1 difference measure ∆W(x)

One observes a nonlinear relationship between the
timing onset of these inputs, their spatial location
relative to the induction site and the corresponding
changes to the STDP window. Note that in
Fig 6A and Fig 6C that the interaction field
ΛS(x) and L1 difference measure ∆W(s) profiles
are qualitatively similar, highlighting the presence
of nonlocal spatial and temporal heterosynaptic
interactions originating from the interplay between
the underlying calcium-based plasticity, neuronal
excitability, and the distribution of calcium ion
channels.

3.6. Inhibitory inputs can influence calcium-
derived STDP

The observations presented so far have shown
that even a short train of excitatory non-plastic-
inducing inputs can influence the expression
of plasticity at a different location (with some
distance between them), but what about inhibitory
inputs? Many studies have often emphasised
the importance of inhibitory inputs and their
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role in shaping the function of neurons and
neural circuits. Driving this is not only the
process of plastic change at individual excitatory
and inhibitory synapses but also the nature of
the spatiotemporal summation of excitatory
and inhibitory inputs along neuronal dendrites.
Synaptic summation between (excitatory and
inhibitory) inputs can be linear or nonlinear,
depending on the relative distance and the order
between them.

Notably, the summation between an excitatory
input followed by an inhibitory input differs
from when an inhibitory input is followed by an
excitatory one (Tuckwell, 1988ab). The synergetic
effects of inhibitory inputs are also implicated
in dynamically moulding functional dendritic
subdomains and plasticity (Gidon & Segev, 2012).
This promotes the question of how inhibitory
inputs, while in the presence of excitation, impact
the resulting STDP window. Fig 7 highlights
a short train of inhibitory inputs had a strong
impact on the L1 distance measure ∆W(x) and
the influence field ΛS(x) when compared to the
results presented in Fig 3, for the case when
inhibitory inputs occur outside of the range of
changing location excitatory inputs at on-path and
off-path locations Fig 7A-B and when inhibition
occurs inside this domain of excitation at x =
45 µm and x = 55 µm. Here, we see that
inhibitory inputs to some degree have equalised the
effect of excitatory inputs on STDP and to achieve
this the inhibitory inputs seem to be employing a
shunting mechanism and further illustrating that
off-path inhibition occurring further away from a
site of excitatory inputs have a stronger inhibitory
effect than on-path inhibition (Gidon & Segev,
2012). One can see a similar effect that off-path
inhibition has a strong impact on both ∆W(x) and
the influence field ΛS(x).

4. Discussion

Analytical solutions of cable equations have
been sidestepped in past decades with discrete
isopotential compartments (D’Angelo & Jirsa,
2022). These compartments result from applying
numerical methods that approximate the cable
equation by a series of connected isopotential
compartments allowing the cable equation to be
recast into a system of differential equations,
which can be solved numerically. This approach
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Figure 7: Adding in a short train of inhibitory
inputs at four different locations leads to changes
to the influence field ΛS(x) and difference measure
∆W(x) through nonlinear spatial excitatory-
inhibitory summation.

has been extensively used, and the notion of
biophysical realism has long been associated
with (morphologically detailed) compartmental
models (see, e.g., Kobayashi et al. (2021)) or
to a lesser extent with reduced compartmental
models (see e.g., Elbasiouny (2014)). Yet,
compartment models developed by Berman
at NIH in the 1960s are susceptible to being
mathematically misconstrued (see Lindsay
et al. (2007)). Moreover, when the number of
compartments approaches infinity the solutions
to the discrete and continuous cable equations
are expected to converge, however for a finite
number of compartments, the discrete version
of cable equations does not represent the same
dynamics as a continuous cable (see Brzychczy
et al. (2012)). This potentially places serious doubt
on the validity of compartmental modelling that
has been overlooked.

Retro to the common approach in early cable
theory was that applied currents represented
synaptic inputs, not by conductance changes
in series with the driving potential (see Jack
et al. (1983)). The driving potential can be
considered constant for very small voltage
fluctuations in the membrane potential from
the resting level, so the conductance change
approximates the current waveform. Treating
synaptic current as a conductance change in
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the cable equation to accurately model synaptic
activity, we call it linear cable with reversal
“synaptic” potentials (Rall, 1977; Tuckwell,
1985 1988a) distributed continuously along the
membrane. However, dendritic cable exhibited a
sparsity in the distribution of synaptic inputs and
ionic channels, and this requires a linear cable
with ionic channels.

Ionic cable theory (Poznanski & Bell, 2000ab)
adequately includes the discreteness of ion-
channel density distribution peppered along the
dendrites, which includes sparsely distributed
ionic channel distribution along the dendritic
cable. The cell-level components of such models
include the rich repertoire of voltage-dependent
ionic channels present in the dendrites of neurons.
The rationale is that a continuous distribution of
voltage-dependent ion channels, as expressed in
cable theory, is an inappropriate approximation for
dendrites with channels occurring in low densities.
Furthermore, the theory reasonably amplifies the
synaptic potentials in neocortical neurons (Stuart
& Sakmann, 1995).

The application of ionic cable theory to a small-
scale neural network level was previously
attempted (see Poznanski (2001 2002ab
2005)). A significant leap in constructing
such biophysically realistic neural network
models was identifying and including the cellular
components in an analytical description of neural
network phenomena. These new models address
the relationship between the single neuron’s
physico-chemical processes (expressed in terms
of biophysical mechanisms) with mechanisms at
the network level. Such models also consider
the rich repertoire of voltage-dependent ionic
channels present in the dendrites of neurons
but not in a large-scale neural network. This
will require extensive use of matrix algebra and
Green’s function matrices commonly employed in
theoretical physics.

Another more realistic approach for the dispersion
of spatially extended synaptic spines along
the dendritic cable was developed by Basser
(1993 2004), who had derived equations for
the nodal distribution in the myelinated axons
where Heaviside step functions defined the
spatial distribution of the nodes where synaptic

input reflects upon a small spatial region of a
dendritic cable. Dendritic neuron models, as
described in Rall et al. (1992), for example, are
inadequate for the description of spontaneous
activity of neurons in vivo, since the resultant
synaptic current input is a random walk of which
a smoothed version or a diffusion approximation
is Gaussian white noise. Stochastic cable models
with white-noise current inputs have been used
to mimic random synaptic bombardment in
generating spontaneous voltage fluctuations of
the membrane potential (Wan & Tuckwell, 1979
1980).

Iannella & Tanaka (2006) extended the “ionic
cable theory” to include calcium as a second
messenger. The subsequent work by Iannella et al.
(2014) considered the role of calcium dynamics in
synaptic plasticity. At the same time, we extended
this approach to a greater repertoire of channels,
which would provide the realism needed to apply
the model to explain phenomena like retinal
direction selectivity (in preparation). Further
work will be needed to extend the modelling to
large-scale neuronal networks with a full set of
voltage-dependent ionic channels based on “ionic
cable theory” using Green’s function matrices.

In parallel, many studies have focused on
calcium’s role in synaptic plasticity and how it
shapes synaptic weight of single synapses on the
dendrites of neurons using simulations (Castellani
et al., 2001; Mäki-Marttunen et al., 2020;
Shouval et al., 2002; Yeung et al., 2004; ?) or
experiments (Debanne et al., 1998; Inglebert et al.,
2020; Kampa et al., 2006; Tazerart et al., 2020)
(For a recent review see (Debanne & Inglebert,
2023)). Consequently, there is increasing interest
in the role of calcium across multiple nearby
synapses on sections of neurite and associated
heterosynaptic plastic events resulting from
stimulation, plasticity induction at a dendritic
site and how this alters the synaptic weight or
the threshold for plastic change in unactivated
nearby synapses (Abraham & Goddard, 1983;
Chater & Goda, 2021; Chistiakova & Volgushev,
2009; Chistiakova et al., 2014; Harvey & Svoboda,
2007; Kourosh-Arami et al., 2023; Moldwin
et al., 2023; Pozo & Goda, 2010). This is,
however, one side of the coin of an overarching
theme we have called Heterosynaptic interactions
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due to the bidirectional nature of voltage and
calcium signalling in dendrites. This inspired
us to look at (what seems to be) the opposing
view of how spatial interactions between non-
plastic-inducing synaptic inputs influence the
intracellular calcium level and the expression of
plasticity at the induction site. We have illustrated
how spatial summation of inputs to a dendrite
segment can affect the resulting expression of an
STDP window derived from calcium-dependent
plasticity, emphasising that patterns of non-plastic-
inducing inputs introduce a distance-dependent
spatiotemporal influence. Despite there being
many ways to study heterosynaptic influences in
dendrites, we decided to use non-plastic-inducing
AMPA inputs originating from a short train of
eleven spikes, in addition to pre- and post-synaptic
input used to calculate the resulting STDP window
for the synapse that contains NMDA. The middle
spike was synchronised with the back-propagating
action potential.

These brief input trains were colocalised and
triggered AMPA receptor currents at some fixed
distance from the STDP induction site, and were
systematically moved in increments of 1 µm steps
with respect to the induction site, starting at 10
µm before the induction site and ending at a final
position 10 µm past this site. We found detectable
changes in the STDP window and quantified
them using two different measures (∆W(x) and
an influence field ΛS(x)) indicating a distance-
dependent interaction driven by these additional
inputs. Notably, this interaction is not fixed and
depends on neuronal excitability, ion channel
distributions and specifically voltage-activated
calcium channels, the location of the induction
site on the dendrite, the distance between this site
and the inputs, and the onset time of the input
train. We showed that the profiles of ∆W and the
influence fieldΛS(x) as a function of distance from
the induction site and time (the difference between
the timing of a post-synaptic event and the onset of
the input train). We found that the spatiotemporal
profiles of these measures, presented in Fig 6,
were not flat but possessed curvature along the
temporal domain. These profiles illustrate a novel
nonlinearity associated with location-dependent
heterosynaptic interactions and highlights the
nontrivial nature of such interactions and their
effects on plasticity outcomes when compared to

the case when no additional input spike train was
used. Underlying such spatiotemporal interactions
is a nontrivial interplay between calcium influx,
accumulation, and diffusion, neuronal excitability,
and the calcium-dependent plasticity rule that
generates the resulting STDP window, where
the distance between inputs and the site of
STDP induction and the nearby calcium channel
hotspots to the induction site provide the largest
contributions that change the STDP window.

We further investigated where a train of inhibitory
inputs was given as an additional stimulation
to the dendrite along with the short train of
excitatory inputs at specific on-path and off-path
locations to the induction site. As shown in
Fig 7, we observe that inhibition equalises the
nonlinear effects caused by the excitatory inputs,
since inhibition typically introduces a shunting
mechanism resulting in a stronger inhibitory effect
for off-path inhibition occurring distal to the
induction site than on-path locations. Our results
are in agreement with Gidon & Segev (2012) since
stronger shunting effects from off-path inhibition
results in larger changes to the resulting STDP
window ∆W(x) and a stronger influence field
ΛS(x). Heterosynaptic interactions can also play
a useful functional role in providing a modulatory
error signal back to the synapse undergoing plastic
change to modulate calcium accumulation and
influence the resulting STDP window. Moreover,
such heterosynaptic interactions can also be crucial
to excitatory-inhibitory balance (Hiratani & Fukai,
2017). Significantly, our work complements
and greatly improves upon the study of Hiratani
& Fukai (2017), who considered a simplified
compartmental model of a dendritic spine with
a phenomenological model of calcium-based
plasticity to show how heterosynaptic plasticity
can establish excitatory-inhibitory balance; we
used a cable-based model for voltage and calcium
dynamics and a physiologically-inspired calcium-
dependent plasticity model to quantify and map
heterosynaptic interactions caused by excitatory
and inhibitory inputs along a section of dendrite
using the L1 measure and an interaction fieldΛS(x)
by illustrating their spatiotemporal characteristics.

Synaptic plasticity (including learning and
memory) is a topic that is constantly under
intense investigation both experimentally and
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theoretically (Abarbanel et al., 2003 2002; Araki
et al., 2024; Bliss & Lomo, 1973; Dudek &
Bear, 1993; Gerstner et al., 1996; Graupner &
Brunel, 2007; Holcman & Schuss, 2005; Holcman
& Triller, 2006; Iannella et al., 2010; Kavalali
& Monteggia, 2020; Kirkwood et al., 1996;
Korkotian et al., 2004; Lee et al., 2024; Magee &
Grienberger, 2020; Nishiyama et al., 2000; Pozo
& Goda, 2010; Rubin et al., 2005; Shouval et al.,
2002; Song & Abbott, 2001; Song et al., 2000) For
over 50 years, there have been several modelling
methodologies and approaches that have used,
ranging from phenomenological models (Graupner
& Brunel, 2007; Rubin et al., 2005; Shouval et al.,
2002; Song et al., 2000) to those that incorporate
calcium diffusion models (Bell & Rangamani,
2023; Earnshaw & Bressloff, 2010; Friedhoff
et al., 2021; Holcman & Schuss, 2005; Holcman
& Triller, 2006; Korkotian et al., 2004; Mäki-
Marttunen et al., 2020).

The majority of studies have relied on point
neuron or single compartment models to
describe the dynamics of real neurons along
with an accompanying plasticity rule typically
focusing on showing agreement with available
experimental data, for example, illustrating
how triplet-based spike timing-dependent
plasticity (Pfister & Gerstner, 2006) can reproduce
frequency effects observed by Sjöström et al.
(2001) or demonstrating that calcium-based
plasticity (BCM theory) (Shah et al., 2006) can
reproduce the inter-spike interactions observed
in experiments (Froemke & Dan, 2002). Given
these and other achievements, fewer studies
have focused on employing networks of spiking
neurons. Classically, network-based simulations
that also employed synaptic plasticity typically
opted to use artificial neural networks to show
the development of orientation and direction
selectivity, neuronal receptive fields, and visual
maps (Tanaka, 1991; Tanaka & Miyashita, 2009;
Wimbauer et al., 1997) and fewer still have used
spiking neural networks (Bartsch & van Hemmen,
2001; Iglesias & Villa, 2008; Iglesias et al., 2005;
Wenisch et al., 2005). Although these models
have been useful for testing hypotheses of how
synaptic plasticity or calcium-based learning
shapes synaptic weigths and connectivity patterns
leading to the emergence of functional properties,
the usual single compartment description of

spiking neurons is not an accurate representation
of real neurons and the applied learning (synaptic
plasticity) rule is typically a phenomenological in
nature. These studies and modelling approaches
all have one major drawback, and that is the
absence of dendritic dynamics.

In order to go beyond and address such short-
comings, some studies have combined synaptic
plasticity with a single biophysically detailed
compartmental model (Gidon & Segev, 2009;
Iannella & Launey, 2017; Iannella & Tanaka, 2006;
Iannella et al., 2010; Rumsey & Abbott, 2006),
thus foregoing the network aspects due to the
lack of computational resources. An exception
are the network models developed by the Blue
Brain Project and later the Human Brain Project
at the École Polytechnique Fédérale de Lausanne
(EPFL) that are based on morphologically-detailed
compartmental models that require large-scale
computing resources to carry out simulations, but
as stated previously, since the dynamics of a
discretised cable is not an exact match to the
dynamics of a continuous cable (Brzychczy et al.,
2012) there are potential concerns on the accuracy
of compartmental models. In response, we have
opted for an alternative approach through the
development and application of ionic cable theory
and applied calcium-based synaptic plasticity. To
date, only a small-scale neural network of ionic
cables was previously developed (Poznanski, 2001
2002ab 2005)), but this did not include calcium
dynamics. Further development will be needed
to extend our models to large-scale cable-based
networks that includes realistic calcium dynamics
and voltage-dependent ion channels and the use of
Green’s function matrices.
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Appendix

We calculate the solution to the linear cable subject
to our spike-shaped current clamp Φ0(X,T) needs
to be is given by:

Φ0(X,T) =
∫ T

0

IA(0,T − s)
Upeak

G(X, 0; s)ds
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where

IA(0,T) = Uo

{
10 sin

( 2π
150

T
)

e−AT/7.5

+ 67e−2AT
− 70e−4AT + 3e−AT/24

}
H(T),

where A = 15, the Heaviside step function is
denoted by H(T) and the Green’s function for the
voltage system is G(X, 0; T) is given by the solution
to the following initial value problem:

∂G
∂T

(X, 0; T) =
∂2G
∂X2 (X, 0; T) − G(X, 0; T), T > 0

G(X, 0; 0) = 0.

The solution corresponds to the response at
position X at time T to a unit impulse at X = 0
and T = 0. For a finite cable with a killed-end
boundary condition G(0, 0; T) = −δ(T) at X = 0
and a sealed-end condition ∂G

∂X (L, 0,T) = 0 at
X = L, several representations for the Green’s
function converges for small T (Tuckwell, 1988a)
for this case, solving the abovementioned initial
value problem for the Green’s functions leads to
the following expression for G(X, 0; T),

G(X, 0; T) =
e−T
√

4πT3

∞∑
n=0

(−1)n
{

[2(n + 1)L − X] exp
(
−

[2(n + 1)L − X]2

4T

)
+ [2nL + X] exp

(
−

[2nL + X]2

4T

)}
,

T > 0. 0 < X < L

and the Green’s function for unit impulses
occurring along the cable G(X,Xi; T) is the
solution to the following,

∂G
∂T

(X,Xi; T) =

∂2G
∂X2 (X,Xi; T) − G(X,Xi; T) + δ(X − Xi)δ(T),

T > 0
G(X,Xi; 0) = 0

with the following killed-end boundary condition
G(0,Xi; T) = 0 at X = 0 and sealed-end condition
∂G
∂X (L,Xi,T) = 0 at X = L (where L is the
electrotonic length). This is calculated using

Laplace transforms and series expansions leading
to

G(X,Xi; T) =
∞∑

n=0

(−1)n
{

exp
(
−

(X + Xi − 2(n + 1)L)2

4T

)
− exp

(
−

(X − Xi + 2(n + 1)L)2

4T

)
+ exp

(
−

(X − Xi − 2nL)2

4T

)
− exp

(
−

(X + Xi + 2nL)2

4T

)}
,

and

H(Xi,X; T) =
∞∑

n=0

(−1)n
{

exp
(
−

(Xi + X − 2(n + 1)L)2

4T

)
− exp

(
−

(Xi − X + 2(n + 1)L)2

4T

)
+ exp

(
−

(Xi − X − 2nL)2

4T

)
− exp

(
−

(Xi + X + 2nL)2

4T

)}
,

Expanding the first few n = 0, 1, 2 terms gives

G(X,Xi; T) ={
exp

(
−

(X − Xi)2

4T

)
− exp

(
−

(X + Xi)2

4T

)
+ exp

(
−

(X + Xi − 2L)2

4T

)
+ exp

(
−

(X + Xi + 2L)2

4T

)
− exp

(
−

(X − Xi − 2L)2

4T

)
+ exp

(
−

(X − Xi + 2L)2

4T

)
+ exp

(
−

(X − Xi − 4L)2

4T

)
+ exp

(
−

(X − Xi + 4L)2

4T

)
− exp

(
−

(X + Xi − 4L)2

4T

)
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+ exp
(
−

(X + Xi + 4L)2

4T

)
+ exp

(
−

(X + Xi − 6L)2

4T

)
+ exp

(
−

(X − Xi + 6L)2

4T

)}

and

H(Xi,X; T) ={
exp

(
−

(Xi − X)2

4T

)
− exp

(
−

(iX + X)2

4T

)
+ exp

(
−

(Xi + X − 2L)2

4T

)
+ exp

(
−

(Xi + X + 2L)2

4T

)
− exp

(
−

(Xi − X − 2L)2

4T

)
+ exp

(
−

(Xi − X + 2L)2

4T

)
+ exp

(
−

(Xi − X − 4L)2

4T

)
+ exp

(
−

(Xi − X + 4L)2

4T

)
− exp

(
−

(Xi + X − 4L)2

4T

)
+ exp

(
−

(Xi + X + 4L)2

4T

)
+ exp

(
−

(Xi + X − 6L)2

4T

)
+ exp

(
−

(Xi − X + 6L)2

4T

)}
,

where the Green’s function for a unit impulse at
position Xi along the cable is given by,

G(X,Xi; T) =

e−T
√

4πT

{
G(X,Xi; T)H(Xi − X)

+ H(Xi,X; T)H(X − Xi)
}
,

T > 0, 0 < X,Xi < L.

Similarly, the corresponding Green’s function for
the calcium system can be calculated from

∂GCa

∂T
(XCa,XCa,i; TCa) =

∂2G
∂X2

Ca

(XCa,XCa,i; TCa) − G(XCa,XCa,i; TCa)

+ δ(XCa − XCa,i)δ(TCa),
GCa(XCa,XCa,i; 0) = 0

TCa > 0, 0 ≤ XCa,XCa,i ≤ LCa.

The solution corresponds to the response at
position XCa at time TCa to a unit impulse at XCa =
XCa,i and TCa = 0. For a finite cable with sealed-
end conditions ∂GCa

∂XCa
(0,XCa,i,TCa) = 0 at XCa = 0

and ∂GCa
∂XCa

(LCa,XCa,i,TCa) = 0 at XCa = LCa, the
corresponding Green’s function is

GCa(XCa,XCa,i; TCa) =
∞∑

n=−∞

{
exp

(
−

(XCa − XCa,i − 2nL)2

4TCa

)
+ exp

(
−

(XCa + XCa,i − 2nL)2

4TCa

)}
,

TCa > 0, 0 ≤ XCa,XCa,i ≤ LCa.

The integral expression for Φ0(X,T) can be solved
analytically but requires the following integrals to
be used,

Γ(−n − v − 1;
X2

4T
) =

∫
∞

X2
4T

z−v−2−nexp(−z)dz,

I =
∫ T

0
ζvexp

(
ζ(α − 1) −

X2

4ζ

)
dζ,

where Γ is the incomplete Gamma function. The
calculation is left as an excerise for the reader,
see Iannella & Poznanski (2023) for details of a
similar calculation for Φ0(X,T).
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