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Abstract 

The concept of dynamic multiscaling has changed our approach to multi-neuronal cable theory. Previously, 

computational neuroscientists considered individual neurons as neural masses or compartmental models, but now, a 

distributed representation of single neurons as ionic cable structures is most likely to lead to a greater understanding of 

how the distribution of ionic channels and synaptic input along the dendrites of a few neurons can offset the collective 

behavior of a large ensemble of neurons and, therefore, provide a measure of the dynamical brain. This change in 

perspective forms the basis of volume conductor-bidomain modeling, a new method that captures multiscalar 

electrophysiology. 
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1. Introduction 
 

The functionality of the macroscale field theory of 

neuronal dynamics of the human brain is shaped by 

its geometry, as evidenced in neuroimaging studies 

(Pang et al., 2023). However, it ignores the dynamic 

continuity among dendritic neurons. In earlier 

models, synaptic plasticity remodels subcellular 

networks by regulating patterns for the synthesis of 

dynamic continuity that forms cognitive networks of 

associable representations (Cacha & Poznanski, 

2011). This dynamic continuity through 

neuromodulation yields a unique functional 

organization, reflecting the brain's self-referential 

character. The process by which this occurs is 

nonsynaptic diffusion neurotransmission (Bach-y-

Rita, 1995). Thus, the post-ontogenic functional 

organization is malleable under adaptive  pressures  

(Freeman,  1975).  A schema resulting from recurrent 

interconnections within a neural network and/or 

through   volume   transmission   where    the   signal 

diffuses into a local volume or neuropil can be 

conceptualized in prototype models by embedding the 

neural networks in a syncytium that interacts with the                            

external microenvironment. Dye coupling between 

neuroglia in the brain forms large syncytial structures 

through gap junctions (Gutnick et al., 1981). 

Therefore, utilizing bidomain modeling (Poznanski, 

1993) and volume conduction is crucial in developing 

dendritic and astrocytic networks (Poznanski  & Riera, 

2006) and their interaction within the neuropil, leading 

toward an integrative theory of cognition (Poznanski, 

2002). 

 
The frequency of firing at synapses can invoke a 

dispositional state formed through electrochemical 

changes involving subtle modulation of the activity of 

a neural network. Dispositional states require a subtle 

change to occur at the synaptic junctions, possibly 

involving  the  extracellular  matrix  surrounding  the 

synaptic boutons through nonsynaptic diffusion via 

volume transmission (Zoli et al., 1998; Fuxe & 

Agnati, 1991). Indeed, neuroglia completes a tripartite 

configuration in which they can modulate signals by 

synthesizing and releasing neural transmitters (Araque 

et al.,  1999).   An   example   of   a   mechanism   for                    
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strengthening synaptic connections without affecting 

the long-term changes in the neuronal synaptic 

elements is glutamate activating IP3 metabotropic 

receptors in neuroglia, causing a rapid influx of 

intracellular Ca2+ resulting in a retrograde Ca2+- 

dependent release of glutamate from neuroglia, 

activating NMDA-type receptors on the presynaptic 

neuron, thereby increasing the release of glutamate, 

and enhancing synaptic transmission (Pereira & 

Furlan, 2010).  

 

2. Field potentials and volume conductor 

bidomain modeling 

Field potentials are modeled using a continuum 

approach (Beurle, 1956; Griffith, 1963, 1965; Fischer, 

1973; Wilson & Cowan, 1973) rather than populations 

of discrete networks where neural assemblies are 

represented as lumped nodes (Wilson & Cowan, 1972; 

Wilson 1999; Omurtag et al., 2000; Nykamp & 

Tranchina, 2000; Coop & Reeke, 2001). The approach 

entails modeling large assemblies of neurons as 

lumped nodes in a one-dimensional neural sheet or 

layer. A field description for the neuronal density and 

extracellular field potential is determined, which does 

not take into consideration the spatial distribution of 

neural masses but instead is based on the spread of 

firing activity between neural assemblies via pseudo 

connections and delays (Ventriglia, 1974; Ingber, 

1982; Amari, 1983; Peretto, 1984; Mallot & 

Giannakopolous, 1996; Jirsa & Haken, 1997; Barna et 

al., 1998; Tuckwell, 1998; Liley et al., 1999).  

 

Cortical activity and evoked (or event-related) 

potentials measured by EEG correlate with synaptic 

activity in the dendrites of neural masses in the form 

of extrasynaptic signals (Wright & Liley, 1996).  

Consequently, continuum models of undistributed 

neural aggregates of cortical activity localized to the 

gray matter and oriented perpendicularly to the cortical 

sheet have been developed for a volume element of 

neural tissue (Nunez, 1974, 1981, 1995; Rotterdam et 

al., 1982; Tuckwell, 2000). The extension of the 

continuum models to spatially distributed neural 

aggregates began with the current source density 

analysis (Nicholson & Llinas, 1971; Nicholson, 1973; 

Freeman, 1975; Nicholson & Freeman, 1975; Mitzdorf 

& Singer, 1977; Mitzdorf, 1985). The key assumption 

of this approach is that a microscopically 

inhomogeneous neural tissue is replaced by a 

macroscopically homogeneous medium with electrical 

properties represented as averaged quantities in a 

volume of tissue representing the dendritic activity of 

a group of neurons. This results in a simple relation 

between the extracellular field potential and the current 

source density of an averaged neural mass of neurons 

but does not consider each neuron's individuality in the 

neuropil. 

 
A multiscalar approach that does not assume a 

macroscopically homogeneous neural tissue (although 

neurons are chosen as point source fields) is based on 

current flow density analysis in a volume conductor 

(Kwan & Murphy, 1974; Klee & Rall, 1977; 

Rotterdam, 1980; Halsheimer et al., 1982; Feenstra et 

al., 1984). An even more realistic approach is 

considering the relationship between each neuron's 

extracellular field potential and transmembrane 

current density in a volume conductor (Rotterdam, 

1987). Therefore, each neuron is represented as a core-

conductor (i.e., a cable with extracellular sheath 

surrounding the core)(Clark & Plonsey, 1968; Bennett 

et al., 1999) at the microscopic level, and at the 

macroscopic level as nodes in a 3D realistic, 

inhomogeneous volume conductor (cf. Bennett et al., 

2001). Such multi-level models capture the essence of 

intra-cortical pathways exhibited throughout the 

neocortex (Nunez, 1995; Bullock, 1997). 

 
How significant are extrasynaptic signals (or local 

field potentials) in the neuropil as a basis for 

cognition? What role do the local field potentials play 

before neural firing in cognition? As a starting point to 

better understand the role of local field potentials, a 

more realistic attempt at modeling neuronal geometry 

is required (Bedard et al., 2017; Harris Bozer,2017). 

An important aspect of neuronal geometry is its 

embedding in 3D space. Still, extrasynaptic signals 

between neurons in 3D space due to synaptic activity 

in the dendritic neuropil have received little theoretical 

attention since most models assume that the 

extracellular space is isopotential. How important is 

volume transmission in the electrical activity of the 

brain? This question must be answered with 

biologically realistic neural networks based on 

simplified models of single neurons embedded in 3D 

space rather than lumped models without spatial 

structure. In their model of cortical spreading 

depression, Tuckwell & Miura (1978) state that no 

account of the contribution from glial syncytium was 

considered, but its inclusion is required for a complete 

model. A monodomain approach advocated by 

Tuckwell (1980; 1981) for the cortical spreading 

depression model needs to be extended to include both 

neuronal and glial depolarizations. 

 

  Volume 3 Issue 2, 2024                                                              140 



 

MacLennan (1993) developed a mathematically 

tractable and biologically plausible model of 

information processing in the neuropil. The model 

includes a closely packed matrix of dendrites, axons, 

somas, and glia as precursor conditions for complex 

interactions in a system of ion fluxes, extrasynaptic 

potentials and neuromodulators of neuronal activity. 

However, field effects in dendrites, because of 

synaptic potential activation in large populations of 

neurons, will require building more realistic models of 

neurons and neural networks, allowing for the 3D 

characterization of neurons and networks to be 

included in the neuropil. This requires a simplification 

in the geometry, which can be made by assuming that 

the interstitial and intracellular domains are linked 

everywhere by a membrane. Therefore, the outflow of 

current from one domain ought to be equal to the 

inflow of current to the other domain, as stipulated by 

Kirchoff’s current law and the continuity of current, 

with the convention that the positive current direction 

is out through the membrane:       

                                                         M 

–   U  
 e dU

  = Σ Mj   
I
Mj 

ds 
                                                                          j=1 

where U is the interstitial volume in the neuropil, M is 

the number of ionic cables in the neuropil,   is the 

conductivity tensor describing the anisotropic 

interstitial 3D-space,  e is the interstitial 

(extracellular) potential, Mj  is the membrane surface 

of the jth ionic cable,  and the IMj is the transmembrane 

current of the jth ionic cable  is given by        

                                                                                 

 

 

where j   is the intracellular potential of the jth ionic 

cable,  is the ratio of the membrane surface area to the 

volume occupied by the neuropil, R is the total number 

of ionic channels, P is the total number of synaptic 

connections, Rm is the membrane surface resistivity, 

Cm is the membrane capacitance, Ij
ion is the ionic 

current flowing into the jth ionic cable, and Ij
syn is the 

synaptic current flowing into the jth ionic cable. The 

analytic expressions for Ij
ion and for Ij

syn are 

complicated nonlinear functional of intracellular and 

interstitial potentials determined using discrete 

Green’s functions (Gruner, 1968). The above approach 

is called a bisyncytia or bidomain model (Schmitt, 

1969; Peskoff, 1979; Plonsey, 1989; Poznanski, 1993). 

 

It assumes that all varieties of cations and anions are 

grouped together to form a “macroscopic” field 

potential. The effects of changes in ionic 

concentrations lead to changes in Nernst potentials, 

resting membrane potentials, and synaptic 

transmission. As a first approximation, the effects of 

such ionic composition changes can be neglected, but 

a full understanding of ionic diffusion in the 

extracellular space requires the dynamics described by 

time-dependent Nernst-Planck equations (Maex, 2017; 

Pods, 2017) as well as those described by ionic cable 

theory (Poznanski & Bell, 2000a,b; Iannella & Tanaka, 

2006, 2007; Xiang et al., 2017) to be incorporated in a 

single unified theory. This consequently permits ionic 

channels to be treated as discrete current sources, 

allowing analytical solutions to the Frankenhauser–

Huxley equations (Poznanski, 2004) and, more 

recently, the backpropagation of action potential 

(Iannella & Poznanski, 2023) and Ca2+ driven synaptic 

plasticity (Iannella & Poznanski, 2024). 
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